Cargando…
Topological Distance-Based Electron Interaction Tensor to Apply a Convolutional Neural Network on Drug-like Compounds
[Image: see text] Deep learning (DL) models in quantitative structure–activity relationship fed the molecular structure directly to the network without using human-designed descriptors by representing molecule as a graph or string (e.g., SMILES code). However, these two representations were oversimp...
Autor principal: | Shin, Hyun Kil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717557/ https://www.ncbi.nlm.nih.gov/pubmed/34984306 http://dx.doi.org/10.1021/acsomega.1c05693 |
Ejemplares similares
-
Electron configuration-based neural network model to predict physicochemical properties of inorganic compounds
por: Shin, Hyun Kil
Publicado: (2020) -
Brain Tumour Segmentation Using Convolutional Neural Network with Tensor Flow
por: Malathi, M, et al.
Publicado: (2019) -
GCRNN: graph convolutional recurrent neural network for compound–protein interaction prediction
por: Elbasani, Ermal, et al.
Publicado: (2022) -
Hands-on convolutional neural networks with TensorFlow: solve computer vision problems with modeling in TensorFlow and Python
por: Zafar, Iffat
Publicado: (2018) -
Drug-Drug Interaction Extraction via Convolutional Neural Networks
por: Liu, Shengyu, et al.
Publicado: (2016)