Cargando…
Resolving the Controversy in Biexciton Binding Energy of Cesium Lead Halide Perovskite Nanocrystals through Heralded Single-Particle Spectroscopy
[Image: see text] Understanding exciton−exciton interaction in multiply excited nanocrystals is crucial to their utilization as functional materials. Yet, for lead halide perovskite nanocrystals, which are promising candidates for nanocrystal-based technologies, numerous contradicting values have be...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717625/ https://www.ncbi.nlm.nih.gov/pubmed/34846120 http://dx.doi.org/10.1021/acsnano.1c06624 |
Sumario: | [Image: see text] Understanding exciton−exciton interaction in multiply excited nanocrystals is crucial to their utilization as functional materials. Yet, for lead halide perovskite nanocrystals, which are promising candidates for nanocrystal-based technologies, numerous contradicting values have been reported for the strength and sign of their exciton−exciton interaction. In this work, we unambiguously determine the biexciton binding energy in single cesium lead halide perovskite nanocrystals at room temperature. This is enabled by the recently introduced single-photon avalanche diode array spectrometer, capable of temporally isolating biexciton−exciton emission cascades while retaining spectral resolution. We demonstrate that CsPbBr(3) nanocrystals feature an attractive exciton−exciton interaction, with a mean biexciton binding energy of 10 meV. For CsPbI(3) nanocrystals, we observe a mean biexciton binding energy that is close to zero, and individual nanocrystals show either weakly attractive or weakly repulsive exciton−exciton interaction. We further show that, within ensembles of both materials, single-nanocrystal biexciton binding energies are correlated with the degree of charge-carrier confinement. |
---|