Cargando…
Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18
BACKGROUND: 1-Hydroxyphenazine (1-OH-PHZ) is a phenazine microbial metabolite with broad-spectrum antibacterial activities against a lot of plant pathogens. However, its use is hampered by the low yield all along. Metabolic engineering of microorganisms is an increasingly powerful method for the pro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717658/ https://www.ncbi.nlm.nih.gov/pubmed/34965873 http://dx.doi.org/10.1186/s12934-021-01731-y |
Sumario: | BACKGROUND: 1-Hydroxyphenazine (1-OH-PHZ) is a phenazine microbial metabolite with broad-spectrum antibacterial activities against a lot of plant pathogens. However, its use is hampered by the low yield all along. Metabolic engineering of microorganisms is an increasingly powerful method for the production of valuable organisms at high levels. Pseudomonas chlororaphis is recognized as a safe and effective plant rhizosphere growth-promoting bacterium, and faster growth rate using glycerol or glucose as a renewable carbon source. Therefore, Pseudomonas chlororaphis is particularly suitable as the chassis cell for the modification and engineering of phenazines. RESULTS: In this study, enzyme PhzS (monooxygenase) was heterologously expressed in a phenazine-1-carboxylic acid (PCA) generating strain Pseudomonas chlororaphis H18, and 1-hydroxyphenazine was isolated, characterized in the genetically modified strain. Next, the yield of 1-hydroxyphenazine was systematically engineered by the strategies including (1) semi-rational design remodeling of crucial protein PhzS, (2) blocking intermediate PCA consumption branch pathway, (3) enhancing the precursor pool, (4) engineering regulatory genes, etc. Finally, the titer of 1-hydroxyphenazine reached 3.6 g/L in 5 L fermenter in 54 h. CONCLUSIONS: The 1-OH-PHZ production of Pseudomonas chlororaphis H18 was greatly improved through systematically engineering strategies, which is the highest, reported to date. This work provides a promising platform for 1-hydroxyphenazine engineering and production. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12934-021-01731-y. |
---|