Cargando…
Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine
In this paper, we propose a novel hybrid model that extends prior work involving ensemble empirical mode decomposition (EEMD) by using fuzzy entropy and extreme learning machine (ELM) methods. We demonstrate this 3-stage model by applying it to forecast carbon futures prices which are characterized...
Autores principales: | Chen, Peng, Vivian, Andrew, Ye, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8717830/ https://www.ncbi.nlm.nih.gov/pubmed/35002000 http://dx.doi.org/10.1007/s10479-021-04406-4 |
Ejemplares similares
-
Forecasting carbon emissions future prices using the machine learning methods
por: Shahzad, Umer, et al.
Publicado: (2023) -
Carbon trading and COVID-19: a hybrid machine learning approach for international carbon price forecasting
por: Zhang, Xingmin, et al.
Publicado: (2023) -
Forecasting mid-price movement of Bitcoin futures using machine learning
por: Akyildirim, Erdinc, et al.
Publicado: (2021) -
Data on forecasting energy prices using machine learning
por: Herrera, Gabriel Paes, et al.
Publicado: (2019) -
A Framework for Final Drive Simultaneous Failure Diagnosis Based on Fuzzy Entropy and Sparse Bayesian Extreme Learning Machine
por: Ye, Qing, et al.
Publicado: (2015)