Cargando…
Novel loss functions for ensemble-based medical image classification
Medical images commonly exhibit multiple abnormalities. Predicting them requires multi-class classifiers whose training and desired reliable performance can be affected by a combination of factors, such as, dataset size, data source, distribution, and the loss function used to train deep neural netw...
Autores principales: | Rajaraman, Sivaramakrishnan, Zamzmi, Ghada, Antani, Sameer K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718001/ https://www.ncbi.nlm.nih.gov/pubmed/34968393 http://dx.doi.org/10.1371/journal.pone.0261307 |
Ejemplares similares
-
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023) -
Trilateral Attention Network for Real-Time Cardiac Region Segmentation
por: ZAMZMI, GHADA, et al.
Publicado: (2021)