Cargando…

Biomarkers related to fatty acid oxidative capacity are predictive for continued weight loss in cachectic cancer patients

BACKGROUND: Cachexia is characterized by a negative protein and energy balance leading to loss of adipose tissue and muscle mass. Cancer cachexia negatively impacts treatment tolerability and prognosis. Supportive interventions should be initiated as early as possible. Biomarkers for early predictio...

Descripción completa

Detalles Bibliográficos
Autores principales: Catanese, Silvia, Beuchel, Carl Friedrich, Sawall, Teresa, Lordick, Florian, Brauer, Rommy, Scholz, Markus, Ceglarek, Uta, Hacker, Ulrich T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718041/
https://www.ncbi.nlm.nih.gov/pubmed/34636159
http://dx.doi.org/10.1002/jcsm.12817
Descripción
Sumario:BACKGROUND: Cachexia is characterized by a negative protein and energy balance leading to loss of adipose tissue and muscle mass. Cancer cachexia negatively impacts treatment tolerability and prognosis. Supportive interventions should be initiated as early as possible. Biomarkers for early prediction of continuing weight loss during the course of disease are currently lacking. METHODS: In this pilot, observational, cross‐sectional, case–control study, cachectic cancer patients undergoing systemic first‐line cancer treatment were matched 2:1 with healthy controls according to age, gender and body mass index. Alterations in amino acid and energy metabolism, as indicated by acylcarnitine levels, were analysed using mass spectrometry in plasma samples (PS) and dried blood specimen (DBS). Welch's two‐sample t‐test was used for comparative analysis of metabolites between cancer patients and healthy matched controls and to identify the metabolomic profiles related to weight loss across different time points. A linear regression model was applied to correlate weight loss and single metabolites as predictor variables. Finally, metabolite pathway enrichment analyses were performed. RESULTS: Eighteen cases (14 male and 4 female) and 36 paired controls were enrolled. There was a good correlation between baseline PS and DBS of healthy controls for the levels of most amino acids but not for acylcarnitine. Amino acid levels related to cancer metabolism were significantly altered in cancer patients compared with controls in both DBS and PS for arginine, citrulline, histidine and ornithine and in DBS only for asparagine, glutamine, methylhistidine, methionine, ornithine, serine, threonine and leucine/isoleucine. Metabolite enrichment analysis in PS of cancer patients revealed histidine metabolism activation (P = 0.0025). Baseline acylcarnitine analysis in DBS was indicative for alterations of the mitochondrial carnitine shuttle, related to β‐oxidation: The ratio palmitoylcarnitine/acylcarnitine (Q2) and the ratio palmitoylcarnitine + octadecenoylcarnitine/acylcarnitine (Q3) were predictive for early weight loss (P < 0.0001) and weight loss during follow‐up. Activation of tryptophan metabolism (P = 0.035) in DBS and PS and activation of serine/glycine metabolism (P = 0.017) in PS were also related to early weight loss and across successive time points. CONCLUSIONS: We found alterations in amino acid levels most likely attributable to cancer metabolism itself in cancer patients compared with controls. Baseline DBS represent a valuable analyte to study energy metabolism related to cancer cachexia. Acylcarnitine patterns (Q2, Q3) predicted further weight loss in cachectic cancer patients undergoing systemic therapy, and pathway analyses indicated involvement of the serine/glycine and the tryptophan pathway in this condition. Validation in larger cohorts is warranted.