Cargando…

Gasdermin D inhibition confers antineutrophil-mediated cardioprotection in acute myocardial infarction

Acute myocardial infarction (AMI) induces blood leukocytosis, which correlates inversely with patient survival. The molecular mechanisms leading to leukocytosis in the infarcted heart remain poorly understood. Using an AMI mouse model, we identified gasdermin D (GSDMD) in activated leukocytes early...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Kai, Tu, Zizhuo, Chen, Kun, Xu, Yue, Chen, Feng, Xu, Sheng, Shi, Tingting, Qian, Jie, Shen, Lan, Hwa, John, Wang, Dandan, Xiang, Yaozu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718151/
https://www.ncbi.nlm.nih.gov/pubmed/34752417
http://dx.doi.org/10.1172/JCI151268
Descripción
Sumario:Acute myocardial infarction (AMI) induces blood leukocytosis, which correlates inversely with patient survival. The molecular mechanisms leading to leukocytosis in the infarcted heart remain poorly understood. Using an AMI mouse model, we identified gasdermin D (GSDMD) in activated leukocytes early in AMI. We demonstrated that GSDMD is required for enhanced early mobilization of neutrophils to the infarcted heart. Loss of GSDMD resulted in attenuated IL-1β release from neutrophils and subsequent decreased neutrophils and monocytes in the infarcted heart. Knockout of GSDMD in mice significantly reduced infarct size, improved cardiac function, and increased post-AMI survival. Through a series of bone marrow transplantation studies and leukocyte depletion experiments, we further clarified that excessive bone marrow–derived and GSDMD-dependent early neutrophil production and mobilization (24 hours after AMI) contributed to the detrimental immunopathology after AMI. Pharmacological inhibition of GSDMD also conferred cardioprotection after AMI through a reduction in scar size and enhancement of heart function. Our study provides mechanistic insights into molecular regulation of neutrophil generation and mobilization after AMI, and supports GSDMD as a new target for improved ventricular remodeling and reduced heart failure after AMI.