Cargando…
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
Predicting traffic data on traffic networks is essential to transportation management. It is a challenging task due to the complicated spatial-temporal dependency. The latest studies mainly focus on capturing temporal and spatial dependencies with spatially dense traffic data. However, when traffic...
Autores principales: | Liu, Shaohua, Dai, Shijun, Sun, Jingkai, Mao, Tianlu, Zhao, Junsuo, Zhang, Heng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718320/ https://www.ncbi.nlm.nih.gov/pubmed/34976047 http://dx.doi.org/10.1155/2021/9134942 |
Ejemplares similares
-
Sparse Spatial-Temporal Emotion Graph Convolutional Network for Video Emotion Recognition
por: Liu, Xiaodong, et al.
Publicado: (2022) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
por: Li, Cong, et al.
Publicado: (2022) -
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
por: Yu, Xian, et al.
Publicado: (2023) -
Highway traffic flow prediction model with multi-component spatial–temporal graph convolution networks
por: Ning, Tao, et al.
Publicado: (2022)