Cargando…
Data Augmentation for Deep Neural Networks Model in EEG Classification Task: A Review
Classification of electroencephalogram (EEG) is a key approach to measure the rhythmic oscillations of neural activity, which is one of the core technologies of brain-computer interface systems (BCIs). However, extraction of the features from non-linear and non-stationary EEG signals is still a chal...
Autores principales: | He, Chao, Liu, Jialu, Zhu, Yuesheng, Du, Wencai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718399/ https://www.ncbi.nlm.nih.gov/pubmed/34975434 http://dx.doi.org/10.3389/fnhum.2021.765525 |
Ejemplares similares
-
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
por: Liu, Junxiu, et al.
Publicado: (2020) -
Recurrent Deep Neural Networks for Real-Time Sleep Stage Classification From Single Channel EEG
por: Bresch, Erik, et al.
Publicado: (2018) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023) -
Deep Neural Network for EEG Signal-Based Subject-Independent Imaginary Mental Task Classification
por: Siddiqui, Farheen, et al.
Publicado: (2023) -
Subject-independent EEG classification based on a hybrid neural network
por: Zhang, Hao, et al.
Publicado: (2023)