Cargando…
Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission
Mitochondria play an essential role in pathophysiology of both inflammatory and neuropathic pain (NP), but the mechanisms are not yet clear. Dynamin-related protein 1 (Drp1) is broadly expressed in the central nervous system and plays a role in the induction of mitochondrial fission process. Spared...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718665/ https://www.ncbi.nlm.nih.gov/pubmed/34954498 http://dx.doi.org/10.1016/j.redox.2021.102216 |
_version_ | 1784624776846770176 |
---|---|
author | Zhang, Kun-Long Li, Shu-Jiao Pu, Xue-Yin Wu, Fei-Fei Liu, Hui Wang, Rui-Qing Liu, Bo-Zhi Li, Ze Li, Kai-Feng Qian, Nian-Song Yang, Yan-Ling Yuan, Hua Wang, Ya-Yun |
author_facet | Zhang, Kun-Long Li, Shu-Jiao Pu, Xue-Yin Wu, Fei-Fei Liu, Hui Wang, Rui-Qing Liu, Bo-Zhi Li, Ze Li, Kai-Feng Qian, Nian-Song Yang, Yan-Ling Yuan, Hua Wang, Ya-Yun |
author_sort | Zhang, Kun-Long |
collection | PubMed |
description | Mitochondria play an essential role in pathophysiology of both inflammatory and neuropathic pain (NP), but the mechanisms are not yet clear. Dynamin-related protein 1 (Drp1) is broadly expressed in the central nervous system and plays a role in the induction of mitochondrial fission process. Spared nerve injury (SNI), due to the dysfunction of the neurons within the spinal dorsal horn (SDH), is the most common NP model. We explored the neuroprotective role of Drp1 within SDH in SNI. SNI mice showed pain behavior and anxiety-like behavior, which was associated with elevation of Drp1, as well as increased density of mitochondria in SDH. Ultrastructural analysis showed SNI induced damaged mitochondria into smaller perimeter and area, tending to be circular. Characteristics of vacuole in the mitochondria further showed SNI induced the increased number of vacuole, widened vac-perimeter and vac-area. Stable overexpression of Drp1 via AAV under the control of the Drp1 promoter by intraspinal injection (Drp1 OE) attenuated abnormal gait and alleviated pain hypersensitivity of SNI mice. Mitochondrial ultrastructure analysis showed that the increased density of mitochondria induced by SNI was recovered by Drp1 OE which, however, did not change mitochondrial morphology and vacuole parameters within SDH. Contrary to Drp1 OE, down-regulation of Drp1 in the SDH by AAV-Drp1 shRNA (Drp1 RNAi) did not alter painful behavior induced by SNI. Ultrastructural analysis showed the treatment by combination of SNI and Drp1 RNAi (SNI + Drp1 RNAi) amplified the damages of mitochondria with the decreased distribution density, increased perimeter and area, as well as larger circularity tending to be more circular. Vacuole data showed SNI + Drp1 RNAi increased vacuole density, perimeter and area within the SDH mitochondria. Our results illustrate that mitochondria within the SDH are sensitive to NP, and targeted mitochondrial Drp1 overexpression attenuates pain hypersensitivity. Drp1 offers a novel therapeutic target for pain treatment. |
format | Online Article Text |
id | pubmed-8718665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-87186652022-01-06 Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission Zhang, Kun-Long Li, Shu-Jiao Pu, Xue-Yin Wu, Fei-Fei Liu, Hui Wang, Rui-Qing Liu, Bo-Zhi Li, Ze Li, Kai-Feng Qian, Nian-Song Yang, Yan-Ling Yuan, Hua Wang, Ya-Yun Redox Biol Research Paper Mitochondria play an essential role in pathophysiology of both inflammatory and neuropathic pain (NP), but the mechanisms are not yet clear. Dynamin-related protein 1 (Drp1) is broadly expressed in the central nervous system and plays a role in the induction of mitochondrial fission process. Spared nerve injury (SNI), due to the dysfunction of the neurons within the spinal dorsal horn (SDH), is the most common NP model. We explored the neuroprotective role of Drp1 within SDH in SNI. SNI mice showed pain behavior and anxiety-like behavior, which was associated with elevation of Drp1, as well as increased density of mitochondria in SDH. Ultrastructural analysis showed SNI induced damaged mitochondria into smaller perimeter and area, tending to be circular. Characteristics of vacuole in the mitochondria further showed SNI induced the increased number of vacuole, widened vac-perimeter and vac-area. Stable overexpression of Drp1 via AAV under the control of the Drp1 promoter by intraspinal injection (Drp1 OE) attenuated abnormal gait and alleviated pain hypersensitivity of SNI mice. Mitochondrial ultrastructure analysis showed that the increased density of mitochondria induced by SNI was recovered by Drp1 OE which, however, did not change mitochondrial morphology and vacuole parameters within SDH. Contrary to Drp1 OE, down-regulation of Drp1 in the SDH by AAV-Drp1 shRNA (Drp1 RNAi) did not alter painful behavior induced by SNI. Ultrastructural analysis showed the treatment by combination of SNI and Drp1 RNAi (SNI + Drp1 RNAi) amplified the damages of mitochondria with the decreased distribution density, increased perimeter and area, as well as larger circularity tending to be more circular. Vacuole data showed SNI + Drp1 RNAi increased vacuole density, perimeter and area within the SDH mitochondria. Our results illustrate that mitochondria within the SDH are sensitive to NP, and targeted mitochondrial Drp1 overexpression attenuates pain hypersensitivity. Drp1 offers a novel therapeutic target for pain treatment. Elsevier 2021-12-20 /pmc/articles/PMC8718665/ /pubmed/34954498 http://dx.doi.org/10.1016/j.redox.2021.102216 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Paper Zhang, Kun-Long Li, Shu-Jiao Pu, Xue-Yin Wu, Fei-Fei Liu, Hui Wang, Rui-Qing Liu, Bo-Zhi Li, Ze Li, Kai-Feng Qian, Nian-Song Yang, Yan-Ling Yuan, Hua Wang, Ya-Yun Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission |
title | Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission |
title_full | Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission |
title_fullStr | Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission |
title_full_unstemmed | Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission |
title_short | Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission |
title_sort | targeted up-regulation of drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718665/ https://www.ncbi.nlm.nih.gov/pubmed/34954498 http://dx.doi.org/10.1016/j.redox.2021.102216 |
work_keys_str_mv | AT zhangkunlong targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT lishujiao targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT puxueyin targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT wufeifei targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT liuhui targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT wangruiqing targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT liubozhi targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT lize targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT likaifeng targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT qianniansong targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT yangyanling targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT yuanhua targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission AT wangyayun targetedupregulationofdrp1indorsalhornattenuatesneuropathicpainhypersensitivitybyincreasingmitochondrialfission |