Cargando…
A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images
OBJECTIVES: Both radiomics and deep learning methods have shown great promise in predicting lesion malignancy in various image-based oncology studies. However, it is still unclear which method to choose for a specific clinical problem given the access to the same amount of training data. In this stu...
Autores principales: | Astaraki, Mehdi, Yang, Guang, Zakko, Yousuf, Toma-Dasu, Iuliana, Smedby, Örjan, Wang, Chunliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718670/ https://www.ncbi.nlm.nih.gov/pubmed/34976794 http://dx.doi.org/10.3389/fonc.2021.737368 |
Ejemplares similares
-
Spherical Convolutional Neural Networks for Survival Rate Prediction in Cancer Patients
por: Sinzinger, Fabian, et al.
Publicado: (2022) -
Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules
por: Huang, Wenjun, et al.
Publicado: (2023) -
Value of Whole-Thyroid CT-Based Radiomics in Predicting Benign and Malignant Thyroid Nodules
por: Xu, Han, et al.
Publicado: (2022) -
Comparison of Radiomic Models Based on Low-Dose and Standard-Dose CT for Prediction of Adenocarcinomas and Benign Lesions in Solid Pulmonary Nodules
por: Liu, Jieke, et al.
Publicado: (2021) -
Predicting Malignancy and Invasiveness of Pulmonary Subsolid Nodules on CT Images Using Deep Learning
por: Shen, Tianle, et al.
Publicado: (2021)