Cargando…
Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis
This dataset is related to the research article entitled ``A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy''. In this article, 74 dialdehyde cellulose samples with different degrees of oxidation were prepare...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718732/ https://www.ncbi.nlm.nih.gov/pubmed/35005146 http://dx.doi.org/10.1016/j.dib.2021.107757 |
_version_ | 1784624793116475392 |
---|---|
author | Simon, Jonas Tsetsgee, Otgontuul Iqbal, Nohman Arshad Sapkota, Janak Ristolainen, Matti Rosenau, Thomas Potthast, Antje |
author_facet | Simon, Jonas Tsetsgee, Otgontuul Iqbal, Nohman Arshad Sapkota, Janak Ristolainen, Matti Rosenau, Thomas Potthast, Antje |
author_sort | Simon, Jonas |
collection | PubMed |
description | This dataset is related to the research article entitled ``A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy''. In this article, 74 dialdehyde cellulose samples with different degrees of oxidation were prepared by periodate oxidation and analysed by Fourier-transform infrared (FTIR) and near-infrared spectroscopy (NIR). The corresponding degrees of oxidation were determined indirectly by periodate consumption using UV spectroscopy at 222 nm and by the quantitative reaction with hydroxylamine hydrochloride followed by potentiometric titration. Partial least squares regression (PLSR) was used to correlate the infrared data with the corresponding degree of oxidation (DO). The developed NIR/PLSR and FTIR/PLSR models can easily be implemented in other laboratories to quickly and reliably predict the degree of oxidation of dialdehyde celluloses. |
format | Online Article Text |
id | pubmed-8718732 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-87187322022-01-06 Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis Simon, Jonas Tsetsgee, Otgontuul Iqbal, Nohman Arshad Sapkota, Janak Ristolainen, Matti Rosenau, Thomas Potthast, Antje Data Brief Data Article This dataset is related to the research article entitled ``A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy''. In this article, 74 dialdehyde cellulose samples with different degrees of oxidation were prepared by periodate oxidation and analysed by Fourier-transform infrared (FTIR) and near-infrared spectroscopy (NIR). The corresponding degrees of oxidation were determined indirectly by periodate consumption using UV spectroscopy at 222 nm and by the quantitative reaction with hydroxylamine hydrochloride followed by potentiometric titration. Partial least squares regression (PLSR) was used to correlate the infrared data with the corresponding degree of oxidation (DO). The developed NIR/PLSR and FTIR/PLSR models can easily be implemented in other laboratories to quickly and reliably predict the degree of oxidation of dialdehyde celluloses. Elsevier 2021-12-23 /pmc/articles/PMC8718732/ /pubmed/35005146 http://dx.doi.org/10.1016/j.dib.2021.107757 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Simon, Jonas Tsetsgee, Otgontuul Iqbal, Nohman Arshad Sapkota, Janak Ristolainen, Matti Rosenau, Thomas Potthast, Antje Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis |
title | Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis |
title_full | Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis |
title_fullStr | Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis |
title_full_unstemmed | Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis |
title_short | Fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis |
title_sort | fourier transform and near infrared dataset of dialdehyde celluloses used to determine the degree of oxidation with chemometric analysis |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718732/ https://www.ncbi.nlm.nih.gov/pubmed/35005146 http://dx.doi.org/10.1016/j.dib.2021.107757 |
work_keys_str_mv | AT simonjonas fouriertransformandnearinfrareddatasetofdialdehydecellulosesusedtodeterminethedegreeofoxidationwithchemometricanalysis AT tsetsgeeotgontuul fouriertransformandnearinfrareddatasetofdialdehydecellulosesusedtodeterminethedegreeofoxidationwithchemometricanalysis AT iqbalnohmanarshad fouriertransformandnearinfrareddatasetofdialdehydecellulosesusedtodeterminethedegreeofoxidationwithchemometricanalysis AT sapkotajanak fouriertransformandnearinfrareddatasetofdialdehydecellulosesusedtodeterminethedegreeofoxidationwithchemometricanalysis AT ristolainenmatti fouriertransformandnearinfrareddatasetofdialdehydecellulosesusedtodeterminethedegreeofoxidationwithchemometricanalysis AT rosenauthomas fouriertransformandnearinfrareddatasetofdialdehydecellulosesusedtodeterminethedegreeofoxidationwithchemometricanalysis AT potthastantje fouriertransformandnearinfrareddatasetofdialdehydecellulosesusedtodeterminethedegreeofoxidationwithchemometricanalysis |