Cargando…

Major tail proteins of bacteriophages of the order Caudovirales

Technological advances in cryo-EM in recent years have given rise to detailed atomic structures of bacteriophage tail tubes—a class of filamentous protein assemblies that could previously only be studied on the atomic scale in either their monomeric form or when packed within a crystal lattice. Thes...

Descripción completa

Detalles Bibliográficos
Autores principales: Zinke, Maximilian, Schröder, Gunnar F., Lange, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8718954/
https://www.ncbi.nlm.nih.gov/pubmed/34890646
http://dx.doi.org/10.1016/j.jbc.2021.101472
Descripción
Sumario:Technological advances in cryo-EM in recent years have given rise to detailed atomic structures of bacteriophage tail tubes—a class of filamentous protein assemblies that could previously only be studied on the atomic scale in either their monomeric form or when packed within a crystal lattice. These hollow elongated protein structures, present in most bacteriophages of the order Caudovirales, connect the DNA-containing capsid with a receptor function at the distal end of the tail and consist of helical and polymerized major tail proteins. However, the resolution of cryo-EM data for these systems differs enormously between different tail tube types, partly inhibiting the building of high-fidelity models and barring a combination with further structural biology methods. Here, we review the structural biology efforts within this field and highlight the role of integrative structural biology approaches that have proved successful for some of these systems. Finally, we summarize the structural elements of major tail proteins and conceptualize how different amounts of tail tube flexibility confer heterogeneity within cryo-EM maps and, thus, limit high-resolution reconstructions.