Cargando…

Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition: ENIGMA Dot Product

Big Data neuroimaging collaborations including Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) integrated worldwide data to identify regional brain deficits in major depressive disorder (MDD). We evaluated the sensitivity of a novel approach to translate ENIGMA-defined MDD deficit pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Kochunov, Peter, Ma, Yizhou, Hatch, Kathryn S., Schmaal, Lianne, Jahanshad, Neda, Thompson, Paul M., Adhikari, Bhim M., Bruce, Heather, Chiappelli, Joshua, Van der vaart, Andrew, Goldwaser, Eric L., Sotiras, Aris, Ma, Tianzhou, Chen, Shuo, Nichols, Thomas E., Hong, L. Elliot
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719281/
https://www.ncbi.nlm.nih.gov/pubmed/34890143
_version_ 1784624903740194816
author Kochunov, Peter
Ma, Yizhou
Hatch, Kathryn S.
Schmaal, Lianne
Jahanshad, Neda
Thompson, Paul M.
Adhikari, Bhim M.
Bruce, Heather
Chiappelli, Joshua
Van der vaart, Andrew
Goldwaser, Eric L.
Sotiras, Aris
Ma, Tianzhou
Chen, Shuo
Nichols, Thomas E.
Hong, L. Elliot
author_facet Kochunov, Peter
Ma, Yizhou
Hatch, Kathryn S.
Schmaal, Lianne
Jahanshad, Neda
Thompson, Paul M.
Adhikari, Bhim M.
Bruce, Heather
Chiappelli, Joshua
Van der vaart, Andrew
Goldwaser, Eric L.
Sotiras, Aris
Ma, Tianzhou
Chen, Shuo
Nichols, Thomas E.
Hong, L. Elliot
author_sort Kochunov, Peter
collection PubMed
description Big Data neuroimaging collaborations including Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) integrated worldwide data to identify regional brain deficits in major depressive disorder (MDD). We evaluated the sensitivity of a novel approach to translate ENIGMA-defined MDD deficit patterns to the individual level. We treated ENIGMA MDD regional deficit patterns as a vector to gauge the similarity between an individual and MDD pattern by calculating ENIGMA dot product (EDP). We analyzed the sensitivity and specificity of EDP in separating subjects with (1) subclinical depressive symptoms but without a diagnosis of MDD, (2) single episode MDD, (3) recurrent MDD, and (4) controls free of neuropsychiatric disorders. We compared EDP to the Quantile Regression Index (QRI; a linear alternative to the widely used ‘brain age’ metric) and the global gray matter thickness and subcortical volumes and fractional anisotropy (FA) of water diffusion. We performed this analysis in a large epidemiological sample of UK Biobank (UKBB) participants (N=17,053/19,265 M/F, age=64.8±7.4 years). Group-average increases in depressive symptoms from controls to recurrent MDD was mirrored by EDP (r(2)=0.85), followed by FA (r(2)=0.81) and QRI (r(2)=0.56). Subjects with MDD showed worse performance on cognitive tests than controls with significant deficits observed for 3 out of 9 cognitive tests administered by the UKBB. We calculated correlations of EDP and other brain indices with measures of cognitive performance in controls. The correlation pattern between EDP and cognition in controls was similar (r(2)=0.75) to the pattern of cognitive differences in MDD. This suggests that the elevation in EDP, even in controls, is associated with cognitive performance - specifically in the MDD-affected domains. That specificity was missing for QRI, FA or other brain imaging indices. In summary, translating anatomically informed meta-analytic indices of similarity using a linear vector approach led to similar or better sensitivity to depressive symptoms and cognitive patterns than whole-brain imaging measurements or an index of accelerated aging.
format Online
Article
Text
id pubmed-8719281
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-87192812022-01-01 Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition: ENIGMA Dot Product Kochunov, Peter Ma, Yizhou Hatch, Kathryn S. Schmaal, Lianne Jahanshad, Neda Thompson, Paul M. Adhikari, Bhim M. Bruce, Heather Chiappelli, Joshua Van der vaart, Andrew Goldwaser, Eric L. Sotiras, Aris Ma, Tianzhou Chen, Shuo Nichols, Thomas E. Hong, L. Elliot Pac Symp Biocomput Article Big Data neuroimaging collaborations including Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) integrated worldwide data to identify regional brain deficits in major depressive disorder (MDD). We evaluated the sensitivity of a novel approach to translate ENIGMA-defined MDD deficit patterns to the individual level. We treated ENIGMA MDD regional deficit patterns as a vector to gauge the similarity between an individual and MDD pattern by calculating ENIGMA dot product (EDP). We analyzed the sensitivity and specificity of EDP in separating subjects with (1) subclinical depressive symptoms but without a diagnosis of MDD, (2) single episode MDD, (3) recurrent MDD, and (4) controls free of neuropsychiatric disorders. We compared EDP to the Quantile Regression Index (QRI; a linear alternative to the widely used ‘brain age’ metric) and the global gray matter thickness and subcortical volumes and fractional anisotropy (FA) of water diffusion. We performed this analysis in a large epidemiological sample of UK Biobank (UKBB) participants (N=17,053/19,265 M/F, age=64.8±7.4 years). Group-average increases in depressive symptoms from controls to recurrent MDD was mirrored by EDP (r(2)=0.85), followed by FA (r(2)=0.81) and QRI (r(2)=0.56). Subjects with MDD showed worse performance on cognitive tests than controls with significant deficits observed for 3 out of 9 cognitive tests administered by the UKBB. We calculated correlations of EDP and other brain indices with measures of cognitive performance in controls. The correlation pattern between EDP and cognition in controls was similar (r(2)=0.75) to the pattern of cognitive differences in MDD. This suggests that the elevation in EDP, even in controls, is associated with cognitive performance - specifically in the MDD-affected domains. That specificity was missing for QRI, FA or other brain imaging indices. In summary, translating anatomically informed meta-analytic indices of similarity using a linear vector approach led to similar or better sensitivity to depressive symptoms and cognitive patterns than whole-brain imaging measurements or an index of accelerated aging. 2022 /pmc/articles/PMC8719281/ /pubmed/34890143 Text en https://creativecommons.org/licenses/by/4.0/Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License.
spellingShingle Article
Kochunov, Peter
Ma, Yizhou
Hatch, Kathryn S.
Schmaal, Lianne
Jahanshad, Neda
Thompson, Paul M.
Adhikari, Bhim M.
Bruce, Heather
Chiappelli, Joshua
Van der vaart, Andrew
Goldwaser, Eric L.
Sotiras, Aris
Ma, Tianzhou
Chen, Shuo
Nichols, Thomas E.
Hong, L. Elliot
Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition: ENIGMA Dot Product
title Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition: ENIGMA Dot Product
title_full Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition: ENIGMA Dot Product
title_fullStr Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition: ENIGMA Dot Product
title_full_unstemmed Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition: ENIGMA Dot Product
title_short Separating Clinical and Subclinical Depression by Big Data Informed Structural Vulnerability Index and Its impact on Cognition: ENIGMA Dot Product
title_sort separating clinical and subclinical depression by big data informed structural vulnerability index and its impact on cognition: enigma dot product
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719281/
https://www.ncbi.nlm.nih.gov/pubmed/34890143
work_keys_str_mv AT kochunovpeter separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT mayizhou separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT hatchkathryns separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT schmaallianne separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT jahanshadneda separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT thompsonpaulm separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT adhikaribhimm separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT bruceheather separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT chiappellijoshua separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT vandervaartandrew separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT goldwaserericl separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT sotirasaris separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT matianzhou separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT chenshuo separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT nicholsthomase separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct
AT honglelliot separatingclinicalandsubclinicaldepressionbybigdatainformedstructuralvulnerabilityindexanditsimpactoncognitionenigmadotproduct