Cargando…
Diversifying Databases of Metal Organic Frameworks for High-Throughput Computational Screening
[Image: see text] By combining metal nodes and organic linkers, an infinite number of metal organic frameworks (MOFs) can be designed in silico. Therefore, when making new databases of such hypothetical MOFs, we need to ensure that they not only contribute toward the growth of the count of structure...
Autores principales: | Majumdar, Sauradeep, Moosavi, Seyed Mohamad, Jablonka, Kevin Maik, Ongari, Daniele, Smit, Berend |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719320/ https://www.ncbi.nlm.nih.gov/pubmed/34910455 http://dx.doi.org/10.1021/acsami.1c16220 |
Ejemplares similares
-
Understanding the diversity of the metal-organic framework ecosystem
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2020) -
Big-Data Science
in Porous Materials: Materials Genomics
and Machine Learning
por: Jablonka, Kevin Maik, et al.
Publicado: (2020) -
A data-driven perspective on the colours of metal–organic frameworks
por: Jablonka, Kevin Maik, et al.
Publicado: (2020) -
Applicability of Tail Corrections in the Molecular
Simulations of Porous Materials
por: Jablonka, Kevin Maik, et al.
Publicado: (2019) -
The
Role of Machine Learning in the Understanding
and Design of Materials
por: Moosavi, Seyed Mohamad, et al.
Publicado: (2020)