Cargando…
Optical coherence tomography for identification of malignant pulmonary nodules based on random forest machine learning algorithm
OBJECTIVE: To explore the feasibility of using random forest (RF) machine learning algorithm in assessing normal and malignant peripheral pulmonary nodules based on in vivo endobronchial optical coherence tomography (EB-OCT). METHODS: A total of 31 patients with pulmonary nodules were admitted to De...
Autores principales: | Ding, Ming, Pan, Shi-yu, Huang, Jing, Yuan, Cheng, Zhang, Qiang, Zhu, Xiao-li, Cai, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719667/ https://www.ncbi.nlm.nih.gov/pubmed/34971557 http://dx.doi.org/10.1371/journal.pone.0260600 |
Ejemplares similares
-
Validation of a Point-of-Care Optical Coherence Tomography Device with Machine Learning Algorithm for Detection of Oral Potentially Malignant and Malignant Lesions
por: James, Bonney Lee, et al.
Publicado: (2021) -
A Review of Machine Learning Algorithms for Retinal Cyst Segmentation on Optical Coherence Tomography
por: Wei, Xing, et al.
Publicado: (2023) -
Optical coherence tomography confirms non‐malignant pigmented lesions in phacomatosis pigmentokeratotica using a support vector machine learning algorithm
por: Lee, Jenna, et al.
Publicado: (2023) -
Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images
por: Kuwayama, Soichiro, et al.
Publicado: (2019) -
Benign‐malignant classification of pulmonary nodules by low‐dose spiral computerized tomography and clinical data with machine learning in opportunistic screening
por: Zheng, Yansong, et al.
Publicado: (2023)