Cargando…
Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks
Characterization of protein complexes, i.e. sets of proteins assembling into a single larger physical entity, is important, as such assemblies play many essential roles in cells such as gene regulation. From networks of protein-protein interactions, potential protein complexes can be identified comp...
Autores principales: | Palukuri, Meghana Venkata, Marcotte, Edward M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719692/ https://www.ncbi.nlm.nih.gov/pubmed/34972161 http://dx.doi.org/10.1371/journal.pone.0262056 |
Ejemplares similares
-
Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks
por: Palukuri, Meghana V., et al.
Publicado: (2021) -
Molecular complex detection in protein interaction networks through reinforcement learning
por: Palukuri, Meghana V., et al.
Publicado: (2023) -
Characterizing the supercomplex association of photosynthetic complexes in cyanobacteria
por: Zhang, Zimeng, et al.
Publicado: (2021) -
Protein complex detection with semi-supervised learning in protein interaction networks
por: Shi, Lei, et al.
Publicado: (2011) -
mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
por: Topçuoğlu, Begüm D., et al.
Publicado: (2021)