Cargando…

Volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling

The function of cellular structures at the mesoscale is dependent on their geometry and proportionality to cell size. The mitotic spindle is a good example why length and shape of intracellular organelles matter. Spindle length determines the distance over which chromosomes will segregate, and spind...

Descripción completa

Detalles Bibliográficos
Autores principales: Kletter, Tobias, Reusch, Sebastian, Cavazza, Tommaso, Dempewolf, Nils, Tischer, Christian, Reber, Simone
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719715/
https://www.ncbi.nlm.nih.gov/pubmed/34787651
http://dx.doi.org/10.1083/jcb.202106170
_version_ 1784624995568189440
author Kletter, Tobias
Reusch, Sebastian
Cavazza, Tommaso
Dempewolf, Nils
Tischer, Christian
Reber, Simone
author_facet Kletter, Tobias
Reusch, Sebastian
Cavazza, Tommaso
Dempewolf, Nils
Tischer, Christian
Reber, Simone
author_sort Kletter, Tobias
collection PubMed
description The function of cellular structures at the mesoscale is dependent on their geometry and proportionality to cell size. The mitotic spindle is a good example why length and shape of intracellular organelles matter. Spindle length determines the distance over which chromosomes will segregate, and spindle shape ensures bipolarity. While we still lack a systematic and quantitative understanding of subcellular morphology, new imaging techniques and volumetric data analysis promise novel insights into scaling relations across different species. Here, we introduce Spindle3D, an open-source plug-in that allows for the quantitative, consistent, and automated analysis of 3D fluorescent data of spindles and chromatin. We systematically analyze different mammalian cell types, including somatic cells, stem cells, and one- and two-cell embryos, to derive volumetric relations of spindle, chromatin, and the cell. Taken together, our data indicate that mitotic spindle width is a robust indicator of spindle volume, which correlates linearly with chromatin and cell volume both within single cell types and across mammalian species.
format Online
Article
Text
id pubmed-8719715
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-87197152022-07-03 Volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling Kletter, Tobias Reusch, Sebastian Cavazza, Tommaso Dempewolf, Nils Tischer, Christian Reber, Simone J Cell Biol Tools The function of cellular structures at the mesoscale is dependent on their geometry and proportionality to cell size. The mitotic spindle is a good example why length and shape of intracellular organelles matter. Spindle length determines the distance over which chromosomes will segregate, and spindle shape ensures bipolarity. While we still lack a systematic and quantitative understanding of subcellular morphology, new imaging techniques and volumetric data analysis promise novel insights into scaling relations across different species. Here, we introduce Spindle3D, an open-source plug-in that allows for the quantitative, consistent, and automated analysis of 3D fluorescent data of spindles and chromatin. We systematically analyze different mammalian cell types, including somatic cells, stem cells, and one- and two-cell embryos, to derive volumetric relations of spindle, chromatin, and the cell. Taken together, our data indicate that mitotic spindle width is a robust indicator of spindle volume, which correlates linearly with chromatin and cell volume both within single cell types and across mammalian species. Rockefeller University Press 2021-11-17 /pmc/articles/PMC8719715/ /pubmed/34787651 http://dx.doi.org/10.1083/jcb.202106170 Text en © 2021 Kletter et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Tools
Kletter, Tobias
Reusch, Sebastian
Cavazza, Tommaso
Dempewolf, Nils
Tischer, Christian
Reber, Simone
Volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling
title Volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling
title_full Volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling
title_fullStr Volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling
title_full_unstemmed Volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling
title_short Volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling
title_sort volumetric morphometry reveals spindle width as the best predictor of mammalian spindle scaling
topic Tools
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719715/
https://www.ncbi.nlm.nih.gov/pubmed/34787651
http://dx.doi.org/10.1083/jcb.202106170
work_keys_str_mv AT klettertobias volumetricmorphometryrevealsspindlewidthasthebestpredictorofmammalianspindlescaling
AT reuschsebastian volumetricmorphometryrevealsspindlewidthasthebestpredictorofmammalianspindlescaling
AT cavazzatommaso volumetricmorphometryrevealsspindlewidthasthebestpredictorofmammalianspindlescaling
AT dempewolfnils volumetricmorphometryrevealsspindlewidthasthebestpredictorofmammalianspindlescaling
AT tischerchristian volumetricmorphometryrevealsspindlewidthasthebestpredictorofmammalianspindlescaling
AT rebersimone volumetricmorphometryrevealsspindlewidthasthebestpredictorofmammalianspindlescaling