Cargando…

Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset

Worldwide, COVID-19 coronavirus disease is spreading rapidly in a second and third wave of infections. In this context of increasing infections, it is critical to know the probability of a specific number of cases being reported. We collated data on new daily confirmed cases of COVID-19 breakouts in...

Descripción completa

Detalles Bibliográficos
Autores principales: Canton Enriquez, Daniel, Niembro-Ceceña, Jose A., Muñoz Mandujano, Martin, Alarcon, Daniel, Arcadia Guerrero, Jorge, Gonzalez Garcia, Ivan, Montes Gutierrez, Agueda Areli, Gutierrez-Lopez, Alfonso
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719919/
https://www.ncbi.nlm.nih.gov/pubmed/35005154
http://dx.doi.org/10.1016/j.dib.2021.107783
_version_ 1784625039193145344
author Canton Enriquez, Daniel
Niembro-Ceceña, Jose A.
Muñoz Mandujano, Martin
Alarcon, Daniel
Arcadia Guerrero, Jorge
Gonzalez Garcia, Ivan
Montes Gutierrez, Agueda Areli
Gutierrez-Lopez, Alfonso
author_facet Canton Enriquez, Daniel
Niembro-Ceceña, Jose A.
Muñoz Mandujano, Martin
Alarcon, Daniel
Arcadia Guerrero, Jorge
Gonzalez Garcia, Ivan
Montes Gutierrez, Agueda Areli
Gutierrez-Lopez, Alfonso
author_sort Canton Enriquez, Daniel
collection PubMed
description Worldwide, COVID-19 coronavirus disease is spreading rapidly in a second and third wave of infections. In this context of increasing infections, it is critical to know the probability of a specific number of cases being reported. We collated data on new daily confirmed cases of COVID-19 breakouts in: Argentina, Brazil, China, Colombia, France, Germany, India, Indonesia, Iran, Italy, Mexico, Poland, Russia, Spain, U.K., and the United States, from the 20th of January, 2020 to 28th of August 2021. A selected sample of almost ten thousand data is used to validate the proposed models. Generalized Extreme-Value Distribution Type 1-Gumbel and Exponential (1, 2 parameters) models were introduced to analyze the probability of new daily confirmed cases. The data presented in this document for each country provide the daily probability of rate incidence. In addition, the frequencies of historical events expressed as a return period in days of the complete data set is provided.
format Online
Article
Text
id pubmed-8719919
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-87199192022-01-03 Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset Canton Enriquez, Daniel Niembro-Ceceña, Jose A. Muñoz Mandujano, Martin Alarcon, Daniel Arcadia Guerrero, Jorge Gonzalez Garcia, Ivan Montes Gutierrez, Agueda Areli Gutierrez-Lopez, Alfonso Data Brief Data Article Worldwide, COVID-19 coronavirus disease is spreading rapidly in a second and third wave of infections. In this context of increasing infections, it is critical to know the probability of a specific number of cases being reported. We collated data on new daily confirmed cases of COVID-19 breakouts in: Argentina, Brazil, China, Colombia, France, Germany, India, Indonesia, Iran, Italy, Mexico, Poland, Russia, Spain, U.K., and the United States, from the 20th of January, 2020 to 28th of August 2021. A selected sample of almost ten thousand data is used to validate the proposed models. Generalized Extreme-Value Distribution Type 1-Gumbel and Exponential (1, 2 parameters) models were introduced to analyze the probability of new daily confirmed cases. The data presented in this document for each country provide the daily probability of rate incidence. In addition, the frequencies of historical events expressed as a return period in days of the complete data set is provided. Elsevier 2022-01-01 /pmc/articles/PMC8719919/ /pubmed/35005154 http://dx.doi.org/10.1016/j.dib.2021.107783 Text en © 2022 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Canton Enriquez, Daniel
Niembro-Ceceña, Jose A.
Muñoz Mandujano, Martin
Alarcon, Daniel
Arcadia Guerrero, Jorge
Gonzalez Garcia, Ivan
Montes Gutierrez, Agueda Areli
Gutierrez-Lopez, Alfonso
Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset
title Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset
title_full Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset
title_fullStr Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset
title_full_unstemmed Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset
title_short Application of probabilistic models for extreme values to the COVID-2019 epidemic daily dataset
title_sort application of probabilistic models for extreme values to the covid-2019 epidemic daily dataset
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8719919/
https://www.ncbi.nlm.nih.gov/pubmed/35005154
http://dx.doi.org/10.1016/j.dib.2021.107783
work_keys_str_mv AT cantonenriquezdaniel applicationofprobabilisticmodelsforextremevaluestothecovid2019epidemicdailydataset
AT niembrocecenajosea applicationofprobabilisticmodelsforextremevaluestothecovid2019epidemicdailydataset
AT munozmandujanomartin applicationofprobabilisticmodelsforextremevaluestothecovid2019epidemicdailydataset
AT alarcondaniel applicationofprobabilisticmodelsforextremevaluestothecovid2019epidemicdailydataset
AT arcadiaguerrerojorge applicationofprobabilisticmodelsforextremevaluestothecovid2019epidemicdailydataset
AT gonzalezgarciaivan applicationofprobabilisticmodelsforextremevaluestothecovid2019epidemicdailydataset
AT montesgutierrezaguedaareli applicationofprobabilisticmodelsforextremevaluestothecovid2019epidemicdailydataset
AT gutierrezlopezalfonso applicationofprobabilisticmodelsforextremevaluestothecovid2019epidemicdailydataset