Cargando…
Specific age‐correlated activation of top hierarchical motor control areas during gait‐like plantar stimulation: An fMRI study
A better understanding of gait disorders that are associated with aging is crucial to prevent adverse outcomes. The functional study of gait remains a thorny issue due to technical constraints inherent to neuroimaging procedures, as most of them require to stay supine and motionless. Using an MRI‐co...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720193/ https://www.ncbi.nlm.nih.gov/pubmed/34738281 http://dx.doi.org/10.1002/hbm.25691 |
_version_ | 1784625091098705920 |
---|---|
author | Jeanvoine, Henry Labriffe, Matthieu Tannou, Thomas Navasiolava, Nastassia Ter Minassian, Aram Girot, Jean‐Baptiste Leiber, Louis‐Marie Custaud, Marc‐Antoine Annweiler, Cédric Dinomais, Mickaël |
author_facet | Jeanvoine, Henry Labriffe, Matthieu Tannou, Thomas Navasiolava, Nastassia Ter Minassian, Aram Girot, Jean‐Baptiste Leiber, Louis‐Marie Custaud, Marc‐Antoine Annweiler, Cédric Dinomais, Mickaël |
author_sort | Jeanvoine, Henry |
collection | PubMed |
description | A better understanding of gait disorders that are associated with aging is crucial to prevent adverse outcomes. The functional study of gait remains a thorny issue due to technical constraints inherent to neuroimaging procedures, as most of them require to stay supine and motionless. Using an MRI‐compatible system of boots reproducing gait‐like plantar stimulation, we investigated the correlation between age and brain fMRI activation during simulated gait in healthy adults. Sixty‐seven right‐handed healthy volunteers aged between 20 and 77 years old (49.2 ± 18.0 years; 35 women) were recruited. Two paradigms were assessed consecutively: (a) gait‐like plantar stimulation and (b) chaotic and not gait‐related plantar stimulation. Resulting statistical parametric maps were analyzed with a multiple‐factor regression that included age and a threshold determined by Monte‐Carlo simulation to fulfill a family‐wise error rate correction of p < .05. In the first paradigm, there was an age‐correlated activation of the right pallidum, thalamus and putamen. The second paradigm showed an age‐correlated deactivation of both primary visual areas (V1). The subtraction between results of the first and second paradigms showed age‐correlated activation of the right presupplementary motor area (Brodmann Area [BA] 6) and right mid‐dorsolateral prefrontal cortex (BA9‐10). Our results show age‐correlated activity in areas that have been associated with the control of gait, highlighting the relevance of this simulation model for functional gait study. The specific progressive activation of top hierarchical control areas in simulated gait and advancing age corroborate a progressive loss of automation in healthy older adults. |
format | Online Article Text |
id | pubmed-8720193 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-87201932022-01-07 Specific age‐correlated activation of top hierarchical motor control areas during gait‐like plantar stimulation: An fMRI study Jeanvoine, Henry Labriffe, Matthieu Tannou, Thomas Navasiolava, Nastassia Ter Minassian, Aram Girot, Jean‐Baptiste Leiber, Louis‐Marie Custaud, Marc‐Antoine Annweiler, Cédric Dinomais, Mickaël Hum Brain Mapp Research Articles A better understanding of gait disorders that are associated with aging is crucial to prevent adverse outcomes. The functional study of gait remains a thorny issue due to technical constraints inherent to neuroimaging procedures, as most of them require to stay supine and motionless. Using an MRI‐compatible system of boots reproducing gait‐like plantar stimulation, we investigated the correlation between age and brain fMRI activation during simulated gait in healthy adults. Sixty‐seven right‐handed healthy volunteers aged between 20 and 77 years old (49.2 ± 18.0 years; 35 women) were recruited. Two paradigms were assessed consecutively: (a) gait‐like plantar stimulation and (b) chaotic and not gait‐related plantar stimulation. Resulting statistical parametric maps were analyzed with a multiple‐factor regression that included age and a threshold determined by Monte‐Carlo simulation to fulfill a family‐wise error rate correction of p < .05. In the first paradigm, there was an age‐correlated activation of the right pallidum, thalamus and putamen. The second paradigm showed an age‐correlated deactivation of both primary visual areas (V1). The subtraction between results of the first and second paradigms showed age‐correlated activation of the right presupplementary motor area (Brodmann Area [BA] 6) and right mid‐dorsolateral prefrontal cortex (BA9‐10). Our results show age‐correlated activity in areas that have been associated with the control of gait, highlighting the relevance of this simulation model for functional gait study. The specific progressive activation of top hierarchical control areas in simulated gait and advancing age corroborate a progressive loss of automation in healthy older adults. John Wiley & Sons, Inc. 2021-11-05 /pmc/articles/PMC8720193/ /pubmed/34738281 http://dx.doi.org/10.1002/hbm.25691 Text en © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Jeanvoine, Henry Labriffe, Matthieu Tannou, Thomas Navasiolava, Nastassia Ter Minassian, Aram Girot, Jean‐Baptiste Leiber, Louis‐Marie Custaud, Marc‐Antoine Annweiler, Cédric Dinomais, Mickaël Specific age‐correlated activation of top hierarchical motor control areas during gait‐like plantar stimulation: An fMRI study |
title | Specific age‐correlated activation of top hierarchical motor control areas during gait‐like plantar stimulation: An fMRI study |
title_full | Specific age‐correlated activation of top hierarchical motor control areas during gait‐like plantar stimulation: An fMRI study |
title_fullStr | Specific age‐correlated activation of top hierarchical motor control areas during gait‐like plantar stimulation: An fMRI study |
title_full_unstemmed | Specific age‐correlated activation of top hierarchical motor control areas during gait‐like plantar stimulation: An fMRI study |
title_short | Specific age‐correlated activation of top hierarchical motor control areas during gait‐like plantar stimulation: An fMRI study |
title_sort | specific age‐correlated activation of top hierarchical motor control areas during gait‐like plantar stimulation: an fmri study |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720193/ https://www.ncbi.nlm.nih.gov/pubmed/34738281 http://dx.doi.org/10.1002/hbm.25691 |
work_keys_str_mv | AT jeanvoinehenry specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy AT labriffematthieu specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy AT tannouthomas specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy AT navasiolavanastassia specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy AT terminassianaram specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy AT girotjeanbaptiste specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy AT leiberlouismarie specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy AT custaudmarcantoine specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy AT annweilercedric specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy AT dinomaismickael specificagecorrelatedactivationoftophierarchicalmotorcontrolareasduringgaitlikeplantarstimulationanfmristudy |