Cargando…
Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training
INTRODUCTION: After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assessing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are generally accepted, they are time-consuming, show high inter-rater variab...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720223/ https://www.ncbi.nlm.nih.gov/pubmed/34972526 http://dx.doi.org/10.1186/s12984-021-00971-8 |
_version_ | 1784625097627140096 |
---|---|
author | Ballester, Belén Rubio Antenucci, Fabrizio Maier, Martina Coolen, Anthony C. C. Verschure, Paul F. M. J. |
author_facet | Ballester, Belén Rubio Antenucci, Fabrizio Maier, Martina Coolen, Anthony C. C. Verschure, Paul F. M. J. |
author_sort | Ballester, Belén Rubio |
collection | PubMed |
description | INTRODUCTION: After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assessing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are generally accepted, they are time-consuming, show high inter-rater variability, have low ecological validity, and are vulnerable to biases introduced by compensatory movements and action modifications. Alternative methods need to be developed for efficient and objective assessment. In this study, we explore the potential of computer-based body tracking systems and classification tools to estimate the motor impairment of the more affected arm in stroke patients. METHODS: We present a method for estimating clinical scores from movement parameters that are extracted from kinematic data recorded during unsupervised computer-based rehabilitation sessions. We identify a number of kinematic descriptors that characterise the patients’ hemiparesis (e.g., movement smoothness, work area), we implement a double-noise model and perform a multivariate regression using clinical data from 98 stroke patients who completed a total of 191 sessions with RGS. RESULTS: Our results reveal a new digital biomarker of arm function, the Total Goal-Directed Movement (TGDM), which relates to the patients work area during the execution of goal-oriented reaching movements. The model’s performance to estimate FM-UE scores reaches an accuracy of [Formula: see text] : 0.38 with an error ([Formula: see text] : 12.8). Next, we evaluate its reliability ([Formula: see text] for test-retest), longitudinal external validity ([Formula: see text] true positive rate), sensitivity, and generalisation to other tasks that involve planar reaching movements ([Formula: see text] : 0.39). The model achieves comparable accuracy also for the Chedoke Arm and Hand Activity Inventory ([Formula: see text] : 0.40) and Barthel Index ([Formula: see text] : 0.35). CONCLUSIONS: Our results highlight the clinical value of kinematic data collected during unsupervised goal-oriented motor training with the RGS combined with data science techniques, and provide new insight into factors underlying recovery and its biomarkers. |
format | Online Article Text |
id | pubmed-8720223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-87202232022-01-05 Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training Ballester, Belén Rubio Antenucci, Fabrizio Maier, Martina Coolen, Anthony C. C. Verschure, Paul F. M. J. J Neuroeng Rehabil Research INTRODUCTION: After a stroke, a wide range of deficits can occur with varying onset latencies. As a result, assessing impairment and recovery are enormous challenges in neurorehabilitation. Although several clinical scales are generally accepted, they are time-consuming, show high inter-rater variability, have low ecological validity, and are vulnerable to biases introduced by compensatory movements and action modifications. Alternative methods need to be developed for efficient and objective assessment. In this study, we explore the potential of computer-based body tracking systems and classification tools to estimate the motor impairment of the more affected arm in stroke patients. METHODS: We present a method for estimating clinical scores from movement parameters that are extracted from kinematic data recorded during unsupervised computer-based rehabilitation sessions. We identify a number of kinematic descriptors that characterise the patients’ hemiparesis (e.g., movement smoothness, work area), we implement a double-noise model and perform a multivariate regression using clinical data from 98 stroke patients who completed a total of 191 sessions with RGS. RESULTS: Our results reveal a new digital biomarker of arm function, the Total Goal-Directed Movement (TGDM), which relates to the patients work area during the execution of goal-oriented reaching movements. The model’s performance to estimate FM-UE scores reaches an accuracy of [Formula: see text] : 0.38 with an error ([Formula: see text] : 12.8). Next, we evaluate its reliability ([Formula: see text] for test-retest), longitudinal external validity ([Formula: see text] true positive rate), sensitivity, and generalisation to other tasks that involve planar reaching movements ([Formula: see text] : 0.39). The model achieves comparable accuracy also for the Chedoke Arm and Hand Activity Inventory ([Formula: see text] : 0.40) and Barthel Index ([Formula: see text] : 0.35). CONCLUSIONS: Our results highlight the clinical value of kinematic data collected during unsupervised goal-oriented motor training with the RGS combined with data science techniques, and provide new insight into factors underlying recovery and its biomarkers. BioMed Central 2021-12-31 /pmc/articles/PMC8720223/ /pubmed/34972526 http://dx.doi.org/10.1186/s12984-021-00971-8 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Ballester, Belén Rubio Antenucci, Fabrizio Maier, Martina Coolen, Anthony C. C. Verschure, Paul F. M. J. Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training |
title | Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training |
title_full | Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training |
title_fullStr | Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training |
title_full_unstemmed | Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training |
title_short | Estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training |
title_sort | estimating upper-extremity function from kinematics in stroke patients following goal-oriented computer-based training |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720223/ https://www.ncbi.nlm.nih.gov/pubmed/34972526 http://dx.doi.org/10.1186/s12984-021-00971-8 |
work_keys_str_mv | AT ballesterbelenrubio estimatingupperextremityfunctionfromkinematicsinstrokepatientsfollowinggoalorientedcomputerbasedtraining AT antenuccifabrizio estimatingupperextremityfunctionfromkinematicsinstrokepatientsfollowinggoalorientedcomputerbasedtraining AT maiermartina estimatingupperextremityfunctionfromkinematicsinstrokepatientsfollowinggoalorientedcomputerbasedtraining AT coolenanthonycc estimatingupperextremityfunctionfromkinematicsinstrokepatientsfollowinggoalorientedcomputerbasedtraining AT verschurepaulfmj estimatingupperextremityfunctionfromkinematicsinstrokepatientsfollowinggoalorientedcomputerbasedtraining |