Cargando…
Panicle-3D: Efficient Phenotyping Tool for Precise Semantic Segmentation of Rice Panicle Point Cloud
The automated measurement of crop phenotypic parameters is of great significance to the quantitative study of crop growth. The segmentation and classification of crop point cloud help to realize the automation of crop phenotypic parameter measurement. At present, crop spike-shaped point cloud segmen...
Autores principales: | Gong, Liang, Du, Xiaofeng, Zhu, Kai, Lin, Ke, Lou, Qiaojun, Yuan, Zheng, Huang, Guoqiang, Liu, Chengliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720256/ https://www.ncbi.nlm.nih.gov/pubmed/35024618 http://dx.doi.org/10.34133/2021/9838929 |
Ejemplares similares
-
Panicle-Cloud: An Open and AI-Powered Cloud Computing Platform for Quantifying Rice Panicles from Drone-Collected Imagery to Enable the Classification of Yield Production in Rice
por: Teng, Zixuan, et al.
Publicado: (2023) -
Panicle Apical Abortion 3 Controls Panicle Development and Seed Size in Rice
por: Yang, Fayu, et al.
Publicado: (2021) -
Panicle-SEG: a robust image segmentation method for rice panicles in the field based on deep learning and superpixel optimization
por: Xiong, Xiong, et al.
Publicado: (2017) -
Panicle Apical Abortion 7 Regulates Panicle Development in Rice (Oryza sativa L.)
por: Dai, Dongqing, et al.
Publicado: (2022) -
Analyzing Nitrogen Effects on Rice Panicle Development by Panicle Detection and Time-Series Tracking
por: Zhou, Qinyang, et al.
Publicado: (2023)