Cargando…
Parameter estimation of Muskingum model using grey wolf optimizer algorithm
Flood routing plays a crucial role in prevention of major economic and human losses, which, in this study, has been conducted via both three- and four-constant parameter non-linear Muskingum models for four hydrographs, along with the Grey Wolf Optimizer (GWO) algorithm. Three benchmark examples and...
Autores principales: | Akbari, Reyhaneh, Hessami-Kermani, Masoud-Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720891/ https://www.ncbi.nlm.nih.gov/pubmed/35004221 http://dx.doi.org/10.1016/j.mex.2021.101589 |
Ejemplares similares
-
Estimation of nonlinear parameters of the type 5 Muskingum model using SOS algorithm
por: Khalifeh, Saeid, et al.
Publicado: (2020) -
Improved Grey Wolf Optimization Algorithm and Application
por: Hou, Yuxiang, et al.
Publicado: (2022) -
Data on optimization of the non-linear Muskingum flood routing in Kardeh River using Goa algorithm
por: Khalifeh, Saeid, et al.
Publicado: (2020) -
An Improved Grey Wolf Optimization Algorithm with Variable Weights
por: Gao, Zheng-Ming, et al.
Publicado: (2019) -
An Intelligent Grey Wolf Optimizer Algorithm for Distributed Compressed Sensing
por: Liu, Haiqiang, et al.
Publicado: (2018)