Cargando…
Statistical methods for analysis of single-cell RNA-sequencing data
Single-cell RNA-sequencing (scRNA-seq) is a recent high-throughput genomic technology used to study the expression dynamics of genes at single-cell level. Analyzing the scRNA-seq data in presence of biological confounding factors including dropout events is a challenging task. Thus, this article pre...
Autores principales: | Das, Samarendra, Rai, Shesh N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720898/ https://www.ncbi.nlm.nih.gov/pubmed/35004214 http://dx.doi.org/10.1016/j.mex.2021.101580 |
Ejemplares similares
-
Differential Expression Analysis of Single-Cell RNA-Seq Data: Current Statistical Approaches and Outstanding Challenges
por: Das, Samarendra, et al.
Publicado: (2022) -
A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies
por: Das, Samarendra, et al.
Publicado: (2021) -
Statistical Approach for Biologically Relevant Gene Selection from High-Throughput Gene Expression Data
por: Das, Samarendra, et al.
Publicado: (2020) -
Statistical Approach of Gene Set Analysis with Quantitative Trait Loci for Crop Gene Expression Studies
por: Das, Samarendra, et al.
Publicado: (2021) -
Fifteen Years of Gene Set Analysis for High-Throughput Genomic Data: A Review of Statistical Approaches and Future Challenges
por: Das, Samarendra, et al.
Publicado: (2020)