Cargando…
Nature inspired optimization tools for SVMs - NIOTS
Support Vector Machines (SVMs) technique for achieving classifiers and regressors. However, to obtain models with high accuracy and low complexity, it is necessary to define the kernel parameters as well as the parameters of the training model, which are called hyperparameters. The challenge of defi...
Autores principales: | Santos, Carlos Eduardo da Silva, Coelho, Leandro dos Santos, Llanos, Carlos Humberto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720899/ https://www.ncbi.nlm.nih.gov/pubmed/35004208 http://dx.doi.org/10.1016/j.mex.2021.101574 |
Ejemplares similares
-
Distributed optimization of multi-class SVMs
por: Alber, Maximilian, et al.
Publicado: (2017) -
Learning Interpretable SVMs for Biological Sequence Classification
por: Rätsch, Gunnar, et al.
Publicado: (2006) -
Robust Grape Detector Based on SVMs and HOG Features
por: Škrabánek, Pavel, et al.
Publicado: (2017) -
Classification of Transgenic Mice by Retinal Imaging Using SVMS
por: Sayeed, Farrukh, et al.
Publicado: (2022) -
Hyperspectral Face Recognition with Adaptive and Parallel SVMs in Partially Hidden Face Scenarios
por: Caba, Julián, et al.
Publicado: (2022)