Cargando…
Application of Deep Convolutional Neural Networks for Discriminating Benign, Borderline, and Malignant Serous Ovarian Tumors From Ultrasound Images
OBJECTIVE: This study aimed to evaluate the performance of the deep convolutional neural network (DCNN) to discriminate between benign, borderline, and malignant serous ovarian tumors (SOTs) on ultrasound(US) images. MATERIAL AND METHODS: This retrospective study included 279 pathology-confirmed SOT...
Autores principales: | Wang, Huiquan, Liu, Chunli, Zhao, Zhe, Zhang, Chao, Wang, Xin, Li, Huiyang, Wu, Haixiao, Liu, Xiaofeng, Li, Chunxiang, Qi, Lisha, Ma, Wenjuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720926/ https://www.ncbi.nlm.nih.gov/pubmed/34988015 http://dx.doi.org/10.3389/fonc.2021.770683 |
Ejemplares similares
-
The Multimodal Ultrasound Features of Ovarian Serous Surface Papillary Borderline Tumor
por: Xie, Lijun, et al.
Publicado: (2022) -
Diagnosis of Ovarian Neoplasms Using Nomogram in Combination With Ultrasound Image-Based Radiomics Signature and Clinical Factors
por: Qi, Lisha, et al.
Publicado: (2021) -
Identification of clinical and molecular features of recurrent serous borderline ovarian tumour
por: Lu, Ziyang, et al.
Publicado: (2022) -
MDCT-Based Radiomics Features for the Differentiation of Serous Borderline Ovarian Tumors and Serous Malignant Ovarian Tumors
por: Yu, Xin-ping, et al.
Publicado: (2021) -
MRI appearance of ovarian serous borderline tumors of the micropapillary type compared to that of typical ovarian serous borderline tumors: radiologic-pathologic correlation
por: Nakai, Go, et al.
Publicado: (2018)