Cargando…
Development and Internal Validation of Supervised Machine Learning Algorithms for Predicting the Risk of Surgical Site Infection Following Minimally Invasive Transforaminal Lumbar Interbody Fusion
Purpose: Machine Learning (ML) is rapidly growing in capability and is increasingly applied to model outcomes and complications in medicine. Surgical site infections (SSI) are a common post-operative complication in spinal surgery. This study aimed to develop and validate supervised ML algorithms fo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720930/ https://www.ncbi.nlm.nih.gov/pubmed/34988091 http://dx.doi.org/10.3389/fmed.2021.771608 |