Cargando…
Development and Internal Validation of Supervised Machine Learning Algorithms for Predicting the Risk of Surgical Site Infection Following Minimally Invasive Transforaminal Lumbar Interbody Fusion
Purpose: Machine Learning (ML) is rapidly growing in capability and is increasingly applied to model outcomes and complications in medicine. Surgical site infections (SSI) are a common post-operative complication in spinal surgery. This study aimed to develop and validate supervised ML algorithms fo...
Autores principales: | Wang, Haosheng, Fan, Tingting, Yang, Bo, Lin, Qiang, Li, Wenle, Yang, Mingyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8720930/ https://www.ncbi.nlm.nih.gov/pubmed/34988091 http://dx.doi.org/10.3389/fmed.2021.771608 |
Ejemplares similares
-
Minimal invasive transforaminal lumbar interbody fusion versus open transforaminal lumbar interbody fusion
por: Kulkarni, Arvind G, et al.
Publicado: (2016) -
Comparison between Minimally Invasive Transforaminal Lumbar Interbody Fusion and Conventional Open Transforaminal Lumbar Interbody Fusion: An Updated Meta-analysis
por: Xie, Lei, et al.
Publicado: (2016) -
Comparison of O-arm navigation and microscope-assisted minimally invasive transforaminal lumbar interbody fusion and conventional transforaminal lumbar interbody fusion for the treatment of lumbar isthmic spondylolisthesis
por: Peng, Peng, et al.
Publicado: (2019) -
Minimally invasive versus open transforaminal lumbar interbody fusion
por: Villavicencio, Alan T., et al.
Publicado: (2010) -
History and Evolution of the Minimally Invasive Transforaminal Lumbar Interbody Fusion
por: Prabhu, Michael C., et al.
Publicado: (2022)