Cargando…
Prediction of the Drug–Drug Interaction Types with the Unified Embedding Features from Drug Similarity Networks
Drug combination therapies are a promising strategy to overcome drug resistance and improve the efficacy of monotherapy in cancer, and it has been shown to lead to a decrease in dose-related toxicities. Except the synergistic reaction between drugs, some antagonistic drug–drug interactions (DDIs) ex...
Autores principales: | Yan, Xiao-Ying, Yin, Peng-Wei, Wu, Xiao-Meng, Han, Jia-Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721167/ https://www.ncbi.nlm.nih.gov/pubmed/34987405 http://dx.doi.org/10.3389/fphar.2021.794205 |
Ejemplares similares
-
Unifying Theories of Psychedelic Drug Effects
por: Swanson, Link R.
Publicado: (2018) -
DDA-SKF: Predicting Drug–Disease Associations Using Similarity Kernel Fusion
por: Gao, Chu-Qiao, et al.
Publicado: (2022) -
Revealing the dynamic landscape of drug-drug interactions through network analysis
por: Jeong, Eugene, et al.
Publicado: (2023) -
Risk of Drug-Drug Interactions in Out-Hospital Drug Dispensings in France: Results From the DRUG-Drug Interaction Prevalence Study
por: Létinier, Louis, et al.
Publicado: (2019) -
Editorial: Drug-drug interactions in pharmacology
por: Pichini, Simona, et al.
Publicado: (2023)