Cargando…

Peplomer bulb shape and coronavirus rotational diffusivity

Recently, the rotational diffusivity of the coronavirus particle in suspension was calculated, from first principles, using general rigid bead-rod theory [M. A. Kanso, Phys. Fluids 32, 113101 (2020)]. We did so by beading the capsid and then also by replacing each of its bulbous spikes with a single...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanso, M. A., Chaurasia, V., Fried, E., Giacomin, A. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721624/
https://www.ncbi.nlm.nih.gov/pubmed/35002207
http://dx.doi.org/10.1063/5.0048626
_version_ 1784625380346298368
author Kanso, M. A.
Chaurasia, V.
Fried, E.
Giacomin, A. J.
author_facet Kanso, M. A.
Chaurasia, V.
Fried, E.
Giacomin, A. J.
author_sort Kanso, M. A.
collection PubMed
description Recently, the rotational diffusivity of the coronavirus particle in suspension was calculated, from first principles, using general rigid bead-rod theory [M. A. Kanso, Phys. Fluids 32, 113101 (2020)]. We did so by beading the capsid and then also by replacing each of its bulbous spikes with a single bead. However, each coronavirus spike is a glycoprotein trimer, and each spike bulb is triangular. In this work, we replace each bulbous coronavirus spike with a bead triplet, where each bead of the triplet is charged identically. This paper, thus, explores the role of bulb triangularity on the rotational diffusivity, an effect not previously considered. We thus use energy minimization for the spreading of triangular bulbs over the spherical capsid. The latter both translates and twists the coronavirus spikes relative to one another, and we then next arrive at the rotational diffusivity of the coronavirus particle in suspension, from first principles. We learn that the triangularity of the coronavirus spike bulb decreases its rotational diffusivity. For a typical peplomer population of 74, bulb triangularity decreases the rotational diffusivity by [Formula: see text].
format Online
Article
Text
id pubmed-8721624
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher AIP Publishing LLC
record_format MEDLINE/PubMed
spelling pubmed-87216242022-01-05 Peplomer bulb shape and coronavirus rotational diffusivity Kanso, M. A. Chaurasia, V. Fried, E. Giacomin, A. J. Phys Fluids (1994) ARTICLES Recently, the rotational diffusivity of the coronavirus particle in suspension was calculated, from first principles, using general rigid bead-rod theory [M. A. Kanso, Phys. Fluids 32, 113101 (2020)]. We did so by beading the capsid and then also by replacing each of its bulbous spikes with a single bead. However, each coronavirus spike is a glycoprotein trimer, and each spike bulb is triangular. In this work, we replace each bulbous coronavirus spike with a bead triplet, where each bead of the triplet is charged identically. This paper, thus, explores the role of bulb triangularity on the rotational diffusivity, an effect not previously considered. We thus use energy minimization for the spreading of triangular bulbs over the spherical capsid. The latter both translates and twists the coronavirus spikes relative to one another, and we then next arrive at the rotational diffusivity of the coronavirus particle in suspension, from first principles. We learn that the triangularity of the coronavirus spike bulb decreases its rotational diffusivity. For a typical peplomer population of 74, bulb triangularity decreases the rotational diffusivity by [Formula: see text]. AIP Publishing LLC 2021-03 2021-03-30 /pmc/articles/PMC8721624/ /pubmed/35002207 http://dx.doi.org/10.1063/5.0048626 Text en © 2021 Author(s) Published under license by AIP Publishing. 1070-6631/2021/33(3)/033115/7/$30.00 https://creativecommons.org/licenses/by/4.0/ All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle ARTICLES
Kanso, M. A.
Chaurasia, V.
Fried, E.
Giacomin, A. J.
Peplomer bulb shape and coronavirus rotational diffusivity
title Peplomer bulb shape and coronavirus rotational diffusivity
title_full Peplomer bulb shape and coronavirus rotational diffusivity
title_fullStr Peplomer bulb shape and coronavirus rotational diffusivity
title_full_unstemmed Peplomer bulb shape and coronavirus rotational diffusivity
title_short Peplomer bulb shape and coronavirus rotational diffusivity
title_sort peplomer bulb shape and coronavirus rotational diffusivity
topic ARTICLES
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721624/
https://www.ncbi.nlm.nih.gov/pubmed/35002207
http://dx.doi.org/10.1063/5.0048626
work_keys_str_mv AT kansoma peplomerbulbshapeandcoronavirusrotationaldiffusivity
AT chaurasiav peplomerbulbshapeandcoronavirusrotationaldiffusivity
AT friede peplomerbulbshapeandcoronavirusrotationaldiffusivity
AT giacominaj peplomerbulbshapeandcoronavirusrotationaldiffusivity