Cargando…

Vitrification of Intact Porcine Femoral Condyle Allografts Using an Optimized Approach

OBJECTIVE: Successful preservation of articular cartilage will increase the availability of osteochondral allografts to treat articular cartilage defects. We compared the effects of 2 methods for storing cartilage tissues using 10-mm diameter osteochondral dowels or femoral condyles at −196°C: (a) s...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Kezhou, Laouar, Leila, Elliott, Janet A. W., Jomha, Nadr M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721677/
https://www.ncbi.nlm.nih.gov/pubmed/33100019
http://dx.doi.org/10.1177/1947603520967077
Descripción
Sumario:OBJECTIVE: Successful preservation of articular cartilage will increase the availability of osteochondral allografts to treat articular cartilage defects. We compared the effects of 2 methods for storing cartilage tissues using 10-mm diameter osteochondral dowels or femoral condyles at −196°C: (a) storage with a surrounding vitrification solution versus (b) storage without a surrounding vitrification solution. We investigated the effects of 2 additives (chondroitin sulfate and ascorbic acid) for vitrification of articular cartilage. DESIGN: Healthy porcine stifle joints (n = 11) from sexually mature pigs were collected from a slaughterhouse within 6 hours after slaughtering. Dimethyl sulfoxide, ethylene glycol, and propylene glycol were permeated into porcine articular cartilage using an optimized 7-hour 3-step cryoprotectant permeation protocol. Chondrocyte viability was assessed by a cell membrane integrity stain and chondrocyte metabolic function was assessed by alamarBlue assay. Femoral condyles after vitrification were assessed by gross morphology for cartilage fractures. RESULTS: There were no differences in the chondrocyte viability (~70%) of 10-mm osteochondral dowels after vitrification with or without the surrounding vitrification solution. Chondrocyte viability in porcine femoral condyles was significantly higher after vitrification without the surrounding vitrification solution (~70%) compared to those with the surrounding vitrification solution (8% to 36%). Moreover, articular cartilage fractures were not seen in femoral condyles vitrified without surrounding vitrification solution compared to fractures seen in condyles with surrounding vitrification solution. CONCLUSIONS: Vitrification of femoral condyle allografts can be achieved by our optimized approach. Removing the surrounding vitrification solution is advantageous for vitrification outcomes of large size osteochondral allografts.