Cargando…
Confidence-Based Framework Using Deep Learning for Automated Sleep Stage Scoring
STUDY OBJECTIVES: Automated sleep stage scoring is not yet vigorously used in practice because of the black-box nature and the risk of wrong predictions. The objective of this study was to introduce a confidence-based framework to detect the possibly wrong predictions that would inform clinicians ab...
Autores principales: | Hong, Jung Kyung, Lee, Taeyoung, Delos Reyes, Roben Deocampo, Hong, Joonki, Tran, Hai Hong, Lee, Dongheon, Jung, Jinhwan, Yoon, In-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8721741/ https://www.ncbi.nlm.nih.gov/pubmed/35002345 http://dx.doi.org/10.2147/NSS.S333566 |
Ejemplares similares
-
End-to-End Sleep Staging Using Nocturnal Sounds from Microphone Chips for Mobile Devices
por: Hong, Joonki, et al.
Publicado: (2022) -
Real-Time Detection of Sleep Apnea Based on Breathing Sounds and Prediction Reinforcement Using Home Noises: Algorithm Development and Validation
por: Le, Vu Linh, et al.
Publicado: (2023) -
Prediction of Sleep Stages Via Deep Learning Using Smartphone Audio Recordings in Home Environments: Model Development and Validation
por: Tran, Hai Hong, et al.
Publicado: (2023) -
Accuracy of 11 Wearable, Nearable, and Airable Consumer Sleep Trackers: Prospective Multicenter Validation Study
por: Lee, Taeyoung, et al.
Publicado: (2023) -
Estimating the confidence intervals for DEA efficiency scores of Asia-Pacific airlines
por: Ngo, Thanh, et al.
Publicado: (2021)