Cargando…
Diabetic retinopathy classification for supervised machine learning algorithms
BACKGROUND: Artificial intelligence and automated technology were first reported more than 70 years ago and nowadays provide unprecedented diagnostic accuracy, screening capacity, risk stratification, and workflow optimization. Diabetic retinopathy is an important cause of preventable blindness worl...
Autores principales: | Nakayama, Luis Filipe, Ribeiro, Lucas Zago, Gonçalves, Mariana Batista, Ferraz, Daniel A., dos Santos, Helen Nazareth Veloso, Malerbi, Fernando Korn, Morales, Paulo Henrique, Maia, Mauricio, Regatieri, Caio Vinicius Saito, Mattos, Rubens Belfort |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722080/ https://www.ncbi.nlm.nih.gov/pubmed/34980281 http://dx.doi.org/10.1186/s40942-021-00352-2 |
Ejemplares similares
-
Artificial intelligence for telemedicine diabetic retinopathy screening: a review
por: Nakayama, Luis Filipe, et al.
Publicado: (2023) -
Digital Education for the Deployment of Artificial Intelligence in Health Care
por: Malerbi, Fernando Korn, et al.
Publicado: (2023) -
Retinal malperfusion in albuminuric Type 1 diabetes mellitus patients without clinical signs of diabetic retinopathy: a prospective pilot study
por: Malerbi, Fernando Korn, et al.
Publicado: (2017) -
Performance of ChatGPT-4 in answering questions from the Brazilian National Examination for Medical Degree Revalidation
por: Gobira, Mauro, et al.
Publicado: (2023) -
Global disparity bias in ophthalmology artificial intelligence applications
por: Nakayama, Luis Filipe, et al.
Publicado: (2022)