Cargando…
Postoperative delirium prediction using machine learning models and preoperative electronic health record data
BACKGROUND: Accurate, pragmatic risk stratification for postoperative delirium (POD) is necessary to target preventative resources toward high-risk patients. Machine learning (ML) offers a novel approach to leveraging electronic health record (EHR) data for POD prediction. We sought to develop and i...
Autores principales: | Bishara, Andrew, Chiu, Catherine, Whitlock, Elizabeth L., Douglas, Vanja C., Lee, Sei, Butte, Atul J., Leung, Jacqueline M., Donovan, Anne L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722098/ https://www.ncbi.nlm.nih.gov/pubmed/34979919 http://dx.doi.org/10.1186/s12871-021-01543-y |
Ejemplares similares
-
Development of a Machine Learning Model of Postoperative Acute Kidney Injury Using Non-Invasive Time-Sensitive Intraoperative Predictors
por: Zamirpour, Siavash, et al.
Publicado: (2023) -
A machine-learning model to predict postoperative delirium following knee arthroplasty using electronic health records
por: Jung, Jong Wook, et al.
Publicado: (2022) -
Development and Validation of an Electronic Health Record–Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment
por: Wong, Andrew, et al.
Publicado: (2018) -
Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings
por: Nelson, Charlotte A., et al.
Publicado: (2019) -
Preoperative medication use and postoperative delirium: a systematic review
por: Kassie, Gizat M., et al.
Publicado: (2017)