Cargando…
Natural Image Reconstruction From fMRI Using Deep Learning: A Survey
With the advent of brain imaging techniques and machine learning tools, much effort has been devoted to building computational models to capture the encoding of visual information in the human brain. One of the most challenging brain decoding tasks is the accurate reconstruction of the perceived nat...
Autores principales: | Rakhimberdina, Zarina, Jodelet, Quentin, Liu, Xin, Murata, Tsuyoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722107/ https://www.ncbi.nlm.nih.gov/pubmed/34987359 http://dx.doi.org/10.3389/fnins.2021.795488 |
Ejemplares similares
-
Population Graph-Based Multi-Model Ensemble Method for Diagnosing Autism Spectrum Disorder
por: Rakhimberdina, Zarina, et al.
Publicado: (2020) -
Constraint-Free Natural Image Reconstruction From fMRI Signals Based on Convolutional Neural Network
por: Zhang, Chi, et al.
Publicado: (2018) -
Using Deep Learning and Resting-State fMRI to Classify Chronic Pain Conditions
por: Santana, Alex Novaes, et al.
Publicado: (2019) -
Evaluation of Task fMRI Decoding With Deep Learning on a Small Sample Dataset
por: Yotsutsuji, Sunao, et al.
Publicado: (2021) -
DC Shifts-fMRI: A Supplement to Event-Related fMRI
por: Li, Qiang, et al.
Publicado: (2019)