Cargando…

DL-3-n-butylphthalide promotes hippocampal neurogenesis and reduces mossy fiber sprouting in chronic temporal lobe epilepsy rats

BACKGROUND: A decrease in hippocampal neurogenesis is considered an important cause of cognitive impairment, while changes in mossy fiber sprouting are closely related to development of spontaneous recurrent seizures in chronic temporal lobe epilepsy (TLE). Racemic l-3-n-butylphthalide (DL-NBP) can...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Shanshan, Liu, Fangxi, Shi, Wei, Wang, Jialu, Zhou, Zhike, Zhang, Xiaoqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722179/
https://www.ncbi.nlm.nih.gov/pubmed/34979964
http://dx.doi.org/10.1186/s12883-021-02516-x
Descripción
Sumario:BACKGROUND: A decrease in hippocampal neurogenesis is considered an important cause of cognitive impairment, while changes in mossy fiber sprouting are closely related to development of spontaneous recurrent seizures in chronic temporal lobe epilepsy (TLE). Racemic l-3-n-butylphthalide (DL-NBP) can alleviate cognitive impairment in ischemic stroke and Alzheimer’s disease by promoting neurogenesis. DL-NBP treatment can also improve cognitive function and reduce seizure incidence in chronic epileptic mice. However, the mechanisms of action of DL-NBP remain unclear. The aim of the present study was to examine the effects of DL-NBP on mossy fiber sprouting, hippocampal neurogenesis, spontaneous epileptic seizures, and cognitive functioning in the chronic phase of TLE. METHODS: Nissl staining was used to evaluate hippocampal injury, while immunofluorescent staining was used to analyze hippocampal neurogenesis. The duration of spontaneous seizures was measured by electroencephalography. The Morris water maze was used to evaluate cognitive function. Timm staining was used to assess mossy fiber sprouting. RESULTS: TLE animals showed reduced proliferation of newborn neurons, cognitive dysfunction, and spontaneous seizures. Treatment with DL-NBP after TLE increased the proliferation and survival of newborn neurons in the dentate gyrus, reversed the neural loss in the hippocampus, alleviated cognitive impairments, and decreased mossy fiber sprouting and long-term spontaneous seizure activity. CONCLUSIONS: We provided pathophysiological and morphological evidence that DL-NBP might be a useful therapeutic for the treatment of TLE.