Cargando…
Crop Agnostic Monitoring Driven by Deep Learning
Farmers require diverse and complex information to make agronomical decisions about crop management including intervention tasks. Generally, this information is gathered by farmers traversing their fields or glasshouses which is often a time consuming and potentially expensive process. In recent yea...
Autores principales: | Halstead, Michael, Ahmadi, Alireza, Smitt, Claus, Schmittmann, Oliver, McCool, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722344/ https://www.ncbi.nlm.nih.gov/pubmed/34987534 http://dx.doi.org/10.3389/fpls.2021.786702 |
Ejemplares similares
-
Editorial: Deep learning in crop diseases and insect pests
por: Chen, Peng, et al.
Publicado: (2023) -
Deep learning-empowered crop breeding: intelligent, efficient and promising
por: Wang, Xiaoding, et al.
Publicado: (2023) -
Editorial: Convolutional neural networks and deep learning for crop improvement and production
por: Yang, Wanneng, et al.
Publicado: (2022) -
Simulating Root Growth as a Function of Soil Strength and Yield With a Field-Scale Crop Model Coupled With a 3D Architectural Root Model
por: Seidel, Sabine Julia, et al.
Publicado: (2022) -
Towards deep learning based smart farming for intelligent weeds management in crops
por: Saqib, Muhammad Ali, et al.
Publicado: (2023)