Cargando…
Estimating the causal effects of multiple intermittent treatments with application to COVID-19
To draw real-world evidence about the comparative effectiveness of multiple time-varying treatments on patient survival, we develop a joint marginal structural survival model and a novel weighting strategy to account for time-varying confounding and censoring. Our methods formulate complex longitudi...
Autores principales: | Hu, Liangyuan, Ji, Jiayi, Joshi, Himanshu, Scott, Erick R., Li, Fan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722604/ https://www.ncbi.nlm.nih.gov/pubmed/34981032 |
Ejemplares similares
-
Estimation of causal effects of multiple treatments in observational studies with a binary outcome
por: Hu, Liangyuan, et al.
Publicado: (2020) -
A flexible approach for causal inference with multiple treatments and clustered survival outcomes
por: Hu, Liangyuan, et al.
Publicado: (2022) -
A Flexible Approach for Assessing Heterogeneity of Causal Treatment Effects on Patient Survival Using Large Datasets with Clustered Observations
por: Hu, Liangyuan, et al.
Publicado: (2022) -
Machine learning to identify and understand key factors for provider-patient discussions about smoking
por: Hu, Liangyuan, et al.
Publicado: (2020) -
Estimating the Energy Costs of Intermittent Exercise
por: Scott, Christopher B., et al.
Publicado: (2013)