Cargando…
Vaccination with BNT162b2 reduces transmission of SARS-CoV-2 to household contacts in Israel
The individual-level effectiveness of vaccines against clinical disease caused by SARS-CoV-2 is well-established. However, few studies have directly examined the effect of COVID-19 vaccines on transmission. We quantified the effectiveness of vaccination with BNT162b2 (Pfizer-BioNTech mRNA-based vacc...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722617/ https://www.ncbi.nlm.nih.gov/pubmed/34981074 http://dx.doi.org/10.1101/2021.07.13.21260393 |
Sumario: | The individual-level effectiveness of vaccines against clinical disease caused by SARS-CoV-2 is well-established. However, few studies have directly examined the effect of COVID-19 vaccines on transmission. We quantified the effectiveness of vaccination with BNT162b2 (Pfizer-BioNTech mRNA-based vaccine) against household transmission of SARS-CoV-2 in Israel. We fit two time-to-event models – a mechanistic transmission model and a regression model – to estimate vaccine effectiveness against susceptibility to infection and infectiousness given infection in household settings. Vaccine effectiveness against susceptibility to infection was 80–88%. For breakthrough infections among vaccinated individuals, the vaccine effectiveness against infectiousness was 41–79%. The overall vaccine effectiveness against transmission was 88.5%. Vaccination provides substantial protection against susceptibility to infection and slightly lower protection against infectiousness given infection, thereby reducing transmission of SARS-CoV-2 to household contacts. |
---|