Cargando…
Explainable Artificial Intelligence for COVID-19 Diagnosis Through Blood Test Variables
This work proposes an explainable artificial intelligence approach to help diagnose COVID-19 patients based on blood test and pathogen variables. Two glass-box models, logistic regression and explainable boosting machine, and two black-box models, random forest and support vector machine, were used...
Autores principales: | Thimoteo, Lucas M., Vellasco, Marley M., Amaral, Jorge, Figueiredo, Karla, Yokoyama, Cátia Lie, Marques, Erito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722647/ http://dx.doi.org/10.1007/s40313-021-00858-y |
Ejemplares similares
-
Explainable Artificial Intelligence for Bias Detection in COVID CT-Scan Classifiers
por: Palatnik de Sousa, Iam, et al.
Publicado: (2021) -
Prototype of Robotic Device for Mobility Assistance for the Elderly in Urban Environments
por: Leite, Daniel, et al.
Publicado: (2020) -
Applications of Explainable Artificial Intelligence in Diagnosis and Surgery
por: Zhang, Yiming, et al.
Publicado: (2022) -
Explainable artificial intelligence for heart rate variability in ECG signal
por: K., Sanjana, et al.
Publicado: (2020) -
A Portable Fuzzy Driver Drowsiness Estimation System
por: Celecia, Alimed, et al.
Publicado: (2020)