Cargando…
Forecasting COVID-19: Vector Autoregression-Based Model
Forecasting the spread of COVID-19 infection is an important aspect of public health management. In this paper, we propose an approach to forecasting the spread of the pandemic based on the vector autoregressive model. Concretely, we combine the time series for the number of new cases and the number...
Autores principales: | Rajab, Khairan, Kamalov, Firuz, Cherukuri, Aswani Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722659/ https://www.ncbi.nlm.nih.gov/pubmed/35004125 http://dx.doi.org/10.1007/s13369-021-06526-2 |
Ejemplares similares
-
Deep learning for Covid-19 forecasting: State-of-the-art review.
por: Kamalov, Firuz, et al.
Publicado: (2022) -
Forecasting Covid-19: SARMA-ARCH approach
por: Kamalov, Firuz, et al.
Publicado: (2021) -
Methodology for forecasting electricity consumption by Grey and Vector autoregressive models
por: Guefano, Serge, et al.
Publicado: (2021) -
Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using Vector Autoregressive model in Pakistan
por: Khan, Firdos, et al.
Publicado: (2020) -
Modeling and forecasting the COVID-19 pandemic with heterogeneous autoregression approaches: South Korea
por: Hwang, Eunju, et al.
Publicado: (2021)