Cargando…
Novel Methods in the Surveillance of Influenza-Like Illness in Germany Using Data From a Symptom Assessment App (Ada): Observational Case Study
BACKGROUND: Participatory epidemiology is an emerging field harnessing consumer data entries of symptoms. The free app Ada allows users to enter the symptoms they are experiencing and applies a probabilistic reasoning model to provide a list of possible causes for these symptoms. OBJECTIVE: The obje...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722671/ https://www.ncbi.nlm.nih.gov/pubmed/34734836 http://dx.doi.org/10.2196/26523 |
Sumario: | BACKGROUND: Participatory epidemiology is an emerging field harnessing consumer data entries of symptoms. The free app Ada allows users to enter the symptoms they are experiencing and applies a probabilistic reasoning model to provide a list of possible causes for these symptoms. OBJECTIVE: The objective of our study is to explore the potential contribution of Ada data to syndromic surveillance by comparing symptoms of influenza-like illness (ILI) entered by Ada users in Germany with data from a national population-based reporting system called GrippeWeb. METHODS: We extracted data for all assessments performed by Ada users in Germany over 3 seasons (2017/18, 2018/19, and 2019/20) and identified those with ILI (report of fever with cough or sore throat). The weekly proportion of assessments in which ILI was reported was calculated (overall and stratified by age group), standardized for the German population, and compared with trends in ILI rates reported by GrippeWeb using time series graphs, scatterplots, and Pearson correlation coefficient. RESULTS: In total, 2.1 million Ada assessments (for any symptoms) were included. Within seasons and across age groups, the Ada data broadly replicated trends in estimated weekly ILI rates when compared with GrippeWeb data (Pearson correlation—2017-18: r=0.86, 95% CI 0.76-0.92; P<.001; 2018-19: r=0.90, 95% CI 0.84-0.94; P<.001; 2019-20: r=0.64, 95% CI 0.44-0.78; P<.001). However, there were differences in the exact timing and nature of the epidemic curves between years. CONCLUSIONS: With careful interpretation, Ada data could contribute to identifying broad ILI trends in countries without existing population-based monitoring systems or to the syndromic surveillance of symptoms not covered by existing systems. |
---|