Cargando…
metID: an R package for automatable compound annotation for LC−MS-based data
SUMMARY: Accurate and efficient compound annotation is a long-standing challenge for LC–MS-based data (e.g. untargeted metabolomics and exposomics). Substantial efforts have been devoted to overcoming this obstacle, whereas current tools are limited by the sources of spectral information used (in-ho...
Autores principales: | Shen, Xiaotao, Wu, Si, Liang, Liang, Chen, Songjie, Contrepois, Kévin, Zhu, Zheng-Jiang, Snyder, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722759/ https://www.ncbi.nlm.nih.gov/pubmed/34432001 http://dx.doi.org/10.1093/bioinformatics/btab583 |
Ejemplares similares
-
ProbMetab: an R package for Bayesian probabilistic annotation of LC–MS-based metabolomics
por: Silva, Ricardo R., et al.
Publicado: (2014) -
An R package to analyse LC/MS metabolomic data: MAIT (Metabolite Automatic Identification Toolkit)
por: Fernández-Albert, Francesc, et al.
Publicado: (2014) -
peakPantheR, an R package for large-scale targeted extraction and integration of annotated metabolic features in LC–MS profiling datasets
por: Wolfer, Arnaud M, et al.
Publicado: (2021) -
ipaPy2: Integrated Probabilistic Annotation (IPA) 2.0—an improved Bayesian-based method for the annotation of LC–MS/MS untargeted metabolomics data
por: Del Carratore, Francesco, et al.
Publicado: (2023) -
aLFQ: an R-package for estimating absolute protein quantities from label-free LC-MS/MS proteomics data
por: Rosenberger, George, et al.
Publicado: (2014)