Cargando…
Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning
MOTIVATION: Antimicrobial resistance (AMR) is one of the biggest global problems threatening human and animal health. Rapid and accurate AMR diagnostic methods are thus very urgently needed. However, traditional antimicrobial susceptibility testing (AST) is time-consuming, low throughput and viable...
Autores principales: | Ren, Yunxiao, Chakraborty, Trinad, Doijad, Swapnil, Falgenhauer, Linda, Falgenhauer, Jane, Goesmann, Alexander, Hauschild, Anne-Christin, Schwengers, Oliver, Heider, Dominik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722762/ https://www.ncbi.nlm.nih.gov/pubmed/34613360 http://dx.doi.org/10.1093/bioinformatics/btab681 |
Ejemplares similares
-
Deep Transfer Learning Enables Robust Prediction of Antimicrobial Resistance for Novel Antibiotics
por: Ren, Yunxiao, et al.
Publicado: (2022) -
Multi-label classification for multi-drug resistance prediction of Escherichia coli
por: Ren, Yunxiao, et al.
Publicado: (2022) -
Whole-Genome Sequences of Clinical Enterobacter bugandensis Isolates from Germany
por: Falgenhauer, Jane, et al.
Publicado: (2019) -
Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores
por: Schwengers, Oliver, et al.
Publicado: (2020) -
bla(CTX-M-27)–Encoding Escherichia coli Sequence Type 131 Lineage C1-M27 Clone in Clinical Isolates, Germany
por: Ghosh, Hiren, et al.
Publicado: (2017)