Cargando…

Ailanthone suppresses the activity of human colorectal cancer cells through the STAT3 signaling pathway

Ailanthone (AIL) is a major quassinoid extracted from the Chinese medicinal herb, Ailanthus altissima, which has been reported to exert anti-proliferative effects on various cancer cells. The present study aimed to investigate the anti-tumor effects of AIL on HCT116 and SW620 colon cancer cells, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Haixiang, Yu, Xiuchong, Yan, Zhilong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722763/
https://www.ncbi.nlm.nih.gov/pubmed/34958109
http://dx.doi.org/10.3892/ijmm.2021.5076
Descripción
Sumario:Ailanthone (AIL) is a major quassinoid extracted from the Chinese medicinal herb, Ailanthus altissima, which has been reported to exert anti-proliferative effects on various cancer cells. The present study aimed to investigate the anti-tumor effects of AIL on HCT116 and SW620 colon cancer cells, and to analyze the underlying molecular mechanisms. CCK-8 assay was used to detect cell viability. Furthermore, colony formation and Transwell assays, and flow cytometry were used to examine the effects of AIL on cell proliferation, apoptosis and migration. Finally, the expression levels of cell cycle control proteins, and caspase and Bcl-2 family-related proteins involved in the regulation of apoptosis, as well as those of cell migration- and pathway-related proteins were examined using western blot analysis. Reverse transcription-quantitative PCR was used to quantitatively analyze the changes in the JAK and STAT3 gene levels in each group. The in vitro cell function tests revealed that AIL inhibited the proliferation and migration, and induced the apoptosis and cell cycle arrest of HCT116 and SW620 cells. It was further found exerted these effects via the JAK/STAT3 signaling pathway, as well as through caspase and Bcl-2 family proteins. On the whole, the present study demonstrates that AIL suppresses the activity of colon cancer cells via the STAT3 pathway.