Cargando…
SGI: automatic clinical subgroup identification in omics datasets
SUMMARY: The ‘Subgroup Identification’ (SGI) toolbox provides an algorithm to automatically detect clinical subgroups of samples in large-scale omics datasets. It is based on hierarchical clustering trees in combination with a specifically designed association testing and visualization framework tha...
Autores principales: | Buyukozkan, Mustafa, Suhre, Karsten, Krumsiek, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8723155/ https://www.ncbi.nlm.nih.gov/pubmed/34529048 http://dx.doi.org/10.1093/bioinformatics/btab656 |
Ejemplares similares
-
maplet: an extensible R toolbox for modular and reproducible metabolomics pipelines
por: Chetnik, Kelsey, et al.
Publicado: (2021) -
MoDentify: phenotype-driven module identification in metabolomics networks at different resolutions
por: Do, Kieu Trinh, et al.
Publicado: (2019) -
integrOmics: an R package to unravel relationships between two omics datasets
por: Lê Cao, Kim-Anh, et al.
Publicado: (2009) -
Dynamix: dynamic visualization by automatic selection of informative tracks from hundreds of genomic datasets
por: Monfort, Matthias, et al.
Publicado: (2017) -
PyIOmica: longitudinal omics analysis and trend identification
por: Domanskyi, Sergii, et al.
Publicado: (2020)