Cargando…
Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic, has affected more than 400 million people worldwide. With the recent rise of new Delta and Omicron variants, the efficacy of the vaccines has become an important question....
Autores principales: | Saeed, Umer, Shah, Syed Yaseen, Ahmad, Jawad, Imran, Muhammad Ali, Abbasi, Qammer H., Shah, Syed Aziz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Xi'an Jiaotong University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724017/ https://www.ncbi.nlm.nih.gov/pubmed/35003825 http://dx.doi.org/10.1016/j.jpha.2021.12.006 |
Ejemplares similares
-
AI-driven lightweight real-time SDR sensing system for anomalous respiration identification using ensemble learning
por: Saeed, Umer, et al.
Publicado: (2022) -
Multiple Participants’ Discrete Activity Recognition in a Well-Controlled Environment Using Universal Software Radio Peripheral Wireless Sensing
por: Saeed, Umer, et al.
Publicado: (2022) -
A Review of the State of the Art in Non-Contact Sensing for COVID-19
por: Taylor, William, et al.
Publicado: (2020) -
Radar Sensing for Activity Classification in Elderly People Exploiting Micro-Doppler Signatures Using Machine Learning
por: Taylor, William, et al.
Publicado: (2021) -
Editorial for the Special Issue on Security and Sensing Devices for Healthcare Technologies
por: Shah, Syed Aziz, et al.
Publicado: (2021)