Cargando…
Identification of Key Transcription Factors and Immune Infiltration Patterns Associated With Breast Cancer Prognosis Using WGCNA and Cox Regression Analysis
Breast cancer is the most frequently diagnosed cancer and the second leading cause of cancer death among women worldwide. Therefore, the need for effective breast cancer treatment is urgent. Transcription factors (TFs) directly participate in gene transcription, and their dysregulation plays a key r...
Autores principales: | Yin, Xin, Liu, Jiaxiang, Wang, Xin, Yang, Tianshu, Li, Gen, Shang, Yaxin, Teng, Xu, Yu, Hefen, Wang, Shuang, Huang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724129/ https://www.ncbi.nlm.nih.gov/pubmed/34993131 http://dx.doi.org/10.3389/fonc.2021.742792 |
Ejemplares similares
-
Identification of key modules and genes associated with breast cancer prognosis using WGCNA and ceRNA network analysis
por: Yin, Xin, et al.
Publicado: (2020) -
Identifying key transcription factors and immune infiltration in non-small-cell lung cancer using weighted correlation network and Cox regression analyses
por: Zhang, Jingyao, et al.
Publicado: (2023) -
Prognostic analysis of patients with breast cancer based on tumor mutational burden and DNA damage repair genes
por: Teng, Xu, et al.
Publicado: (2023) -
A Ten-N(6)-Methyladenosine (m(6)A)-Modified Gene Signature Based on a Risk Score System Predicts Patient Prognosis in Rectum Adenocarcinoma
por: Huang, Wei, et al.
Publicado: (2021) -
Ehm2 transcript variant 1 inhibits breast cancer progression and increases E-cadherin stability
por: Yin, Xin, et al.
Publicado: (2022)