Cargando…
An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis
ABSTRACT: Fluoroscopy-induced chronic radiation dermatitis (FICRD) is a complication of fluoroscopy-guided intervention. Unlike acute radiation dermatitis, FICRD is different as delayed onset and usually appears without preexisting acute dermatitis. Unfortunately, the chronic and progressive patholo...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724166/ https://www.ncbi.nlm.nih.gov/pubmed/34689211 http://dx.doi.org/10.1007/s00109-021-02146-3 |
_version_ | 1784625866986225664 |
---|---|
author | Wei, Kai-Che Lai, Shih-Fan Huang, Wei-Lun Yang, Kuo-Chung Lai, Ping-Chin Wei, Wan-Ju Chang, Tsung-Hsien Huang, Yun-Chen Tsai, Ya-Chuan Lin, Shin-Chih Lin, Sun-Jang Lin, Shih-Chieh |
author_facet | Wei, Kai-Che Lai, Shih-Fan Huang, Wei-Lun Yang, Kuo-Chung Lai, Ping-Chin Wei, Wan-Ju Chang, Tsung-Hsien Huang, Yun-Chen Tsai, Ya-Chuan Lin, Shin-Chih Lin, Sun-Jang Lin, Shih-Chieh |
author_sort | Wei, Kai-Che |
collection | PubMed |
description | ABSTRACT: Fluoroscopy-induced chronic radiation dermatitis (FICRD) is a complication of fluoroscopy-guided intervention. Unlike acute radiation dermatitis, FICRD is different as delayed onset and usually appears without preexisting acute dermatitis. Unfortunately, the chronic and progressive pathology of FICRD makes it difficult to treat, and some patients need to receive wide excision and reconstruction surgery. Due to lack of standard treatment, investigating underlying mechanism is needed in order to develop an effective therapy. Herein, the Hippo pathway is specifically identified using an RNA-seq analysis in mild damaged skin specimens of patients with FICRD. Furthermore, specific increase of the Yes-associated protein (YAP1), an effector of the Hippo pathway, in skin region with mild damage plays a protective role for keratinocytes via positively regulating the numerous downstream genes involved in different biological processes. Interestingly, irradiated-keratinocytes inhibit activation of fibroblasts under TGF-β1 treatment via remote control by an exosome containing YAP1. More importantly, targeting one of YAP1 downstream genes, nuclear receptor subfamily 3 group C member 1 (NR3C1), which encodes glucocorticoid receptor, has revealed its therapeutic potential to treat FICRD by inhibiting fibroblasts activation in vitro and preventing formation of radiation ulcers in a mouse model and in patients with FICRD. Taken together, this translational research demonstrates the critical role of YAP1 in FICRD and identification of a feasible, effective therapy for patients with FICRD. KEY MESSAGES: • YAP1 overexpression in skin specimens of radiation dermatitis from FICRD patient. • Radiation-induced YAP1 expression plays protective roles by promoting DNA damage repair and inhibiting fibrosis via remote control of exosomal YAP1. • YAP1 positively regulates NR3C1 which encodes glucocorticoid receptor expression. • Targeting glucocorticoid receptor by prednisolone has therapeutic potential for FICRD patient. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00109-021-02146-3. |
format | Online Article Text |
id | pubmed-8724166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-87241662022-01-13 An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis Wei, Kai-Che Lai, Shih-Fan Huang, Wei-Lun Yang, Kuo-Chung Lai, Ping-Chin Wei, Wan-Ju Chang, Tsung-Hsien Huang, Yun-Chen Tsai, Ya-Chuan Lin, Shin-Chih Lin, Sun-Jang Lin, Shih-Chieh J Mol Med (Berl) Original Article ABSTRACT: Fluoroscopy-induced chronic radiation dermatitis (FICRD) is a complication of fluoroscopy-guided intervention. Unlike acute radiation dermatitis, FICRD is different as delayed onset and usually appears without preexisting acute dermatitis. Unfortunately, the chronic and progressive pathology of FICRD makes it difficult to treat, and some patients need to receive wide excision and reconstruction surgery. Due to lack of standard treatment, investigating underlying mechanism is needed in order to develop an effective therapy. Herein, the Hippo pathway is specifically identified using an RNA-seq analysis in mild damaged skin specimens of patients with FICRD. Furthermore, specific increase of the Yes-associated protein (YAP1), an effector of the Hippo pathway, in skin region with mild damage plays a protective role for keratinocytes via positively regulating the numerous downstream genes involved in different biological processes. Interestingly, irradiated-keratinocytes inhibit activation of fibroblasts under TGF-β1 treatment via remote control by an exosome containing YAP1. More importantly, targeting one of YAP1 downstream genes, nuclear receptor subfamily 3 group C member 1 (NR3C1), which encodes glucocorticoid receptor, has revealed its therapeutic potential to treat FICRD by inhibiting fibroblasts activation in vitro and preventing formation of radiation ulcers in a mouse model and in patients with FICRD. Taken together, this translational research demonstrates the critical role of YAP1 in FICRD and identification of a feasible, effective therapy for patients with FICRD. KEY MESSAGES: • YAP1 overexpression in skin specimens of radiation dermatitis from FICRD patient. • Radiation-induced YAP1 expression plays protective roles by promoting DNA damage repair and inhibiting fibrosis via remote control of exosomal YAP1. • YAP1 positively regulates NR3C1 which encodes glucocorticoid receptor expression. • Targeting glucocorticoid receptor by prednisolone has therapeutic potential for FICRD patient. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00109-021-02146-3. Springer Berlin Heidelberg 2021-10-23 2022 /pmc/articles/PMC8724166/ /pubmed/34689211 http://dx.doi.org/10.1007/s00109-021-02146-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Article Wei, Kai-Che Lai, Shih-Fan Huang, Wei-Lun Yang, Kuo-Chung Lai, Ping-Chin Wei, Wan-Ju Chang, Tsung-Hsien Huang, Yun-Chen Tsai, Ya-Chuan Lin, Shin-Chih Lin, Sun-Jang Lin, Shih-Chieh An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis |
title | An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis |
title_full | An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis |
title_fullStr | An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis |
title_full_unstemmed | An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis |
title_short | An innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis |
title_sort | innovative targeted therapy for fluoroscopy-induced chronic radiation dermatitis |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724166/ https://www.ncbi.nlm.nih.gov/pubmed/34689211 http://dx.doi.org/10.1007/s00109-021-02146-3 |
work_keys_str_mv | AT weikaiche aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT laishihfan aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT huangweilun aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT yangkuochung aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT laipingchin aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT weiwanju aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT changtsunghsien aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT huangyunchen aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT tsaiyachuan aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT linshinchih aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT linsunjang aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT linshihchieh aninnovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT weikaiche innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT laishihfan innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT huangweilun innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT yangkuochung innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT laipingchin innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT weiwanju innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT changtsunghsien innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT huangyunchen innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT tsaiyachuan innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT linshinchih innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT linsunjang innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis AT linshihchieh innovativetargetedtherapyforfluoroscopyinducedchronicradiationdermatitis |