Cargando…
Personalized prediction of rehabilitation outcomes in multiple sclerosis: a proof-of-concept using clinical data, digital health metrics, and machine learning
Predicting upper limb neurorehabilitation outcomes in persons with multiple sclerosis (pwMS) is essential to optimize therapy allocation. Previous research identified population-level predictors through linear models and clinical data. This work explores the feasibility of predicting individual neur...
Autores principales: | Kanzler, Christoph M., Lamers, Ilse, Feys, Peter, Gassert, Roger, Lambercy, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724183/ https://www.ncbi.nlm.nih.gov/pubmed/34822120 http://dx.doi.org/10.1007/s11517-021-02467-y |
Ejemplares similares
-
A data-driven framework for selecting and validating digital health metrics: use-case in neurological sensorimotor impairments
por: Kanzler, Christoph M., et al.
Publicado: (2020) -
Reliability and validity of digital health metrics for assessing arm and hand impairments in an ataxic disorder
por: Kanzler, Christoph M., et al.
Publicado: (2022) -
Goal-directed upper limb movement patterns and hand grip forces in
multiple sclerosis
por: Kanzler, Christoph M, et al.
Publicado: (2022) -
Performance metrics for an application-driven selection and optimization of psychophysical sampling procedures
por: Rinderknecht, Mike D., et al.
Publicado: (2018) -
Reliable and Valid Robotic Assessments of Hand Active and Passive Position Sense in Children With Unilateral Cerebral Palsy
por: Zbytniewska-Mégret, Monika, et al.
Publicado: (2022)